題目
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [?2,1,?3,4,?1,2,1,?5,4]
,
the contiguous subarray [4,?1,2,1]
has the largest sum = 6
.
click to show more practice.
More practice:If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
分析經典題目,有O(n)的遍歷一遍的解法(解法1)。
此外,題目還要求用分治法(解法2),需要注意的是,需要求取合並位置向兩邊擴展能夠得到的最大子數組值。
解法1
public class MaximumSubarray { public int maxSubArray(int[] A) { int max = A[0]; int sum = A[0]; for (int i = 1; i < A.length; ++i) { sum = Math.max(sum + A[i], A[i]); max = Math.max(max, sum); } return max; } }解法2
public class MaximumSubarray { public int maxSubArray(int[] A) { return solve(A, 0, A.length - 1); } private int solve(int[] A, int low, int high) { if (low == high) { return A[low]; } int mid = low + (high - low)/ 2; int leftMax = solve(A, low, mid); int rightMax = solve(A, mid + 1, high); int leftSum = A[mid]; int sum = A[mid]; for (int i = mid - 1; i >= low; --i) { sum += A[i]; leftSum = Math.max(leftSum, sum); } int rightSum = A[mid + 1]; sum = A[mid + 1]; for (int i = mid + 2; i <= high; ++i) { sum += A[i]; rightSum = Math.max(rightSum, sum); } return Math.max(Math.max(leftMax, rightMax), leftSum + rightSum); } }