Problem D
Input: standard input
Output: standard output
Time Limit: 10 seconds
There are black and white knights on a 5 by 5 chessboard. There are twelve of each color, and there is one square that is empty. At any time, a knight can move into an empty square as long as it moves like a knight in normal chess (what else did you expect?).
Given an initial position of the board, the question is: what is the minimum number of moves in which we can reach the final position which is:
Input<喎?http://www.Bkjia.com/kf/ware/vc/" target="_blank" class="keylink">vc3Ryb25nPjwvcD4KPHA+Rmlyc3QgbGluZSBvZiB0aGUgaW5wdXQgZmlsZSBjb250YWlucyBhbiBpbnRlZ2VyIE4gKE48MTQpIHRoYXQgaW5kaWNhdGVzIGhvdyBtYW55IHNldHMgb2YgaW5wdXRzIGFyZSB0aGVyZS4gVGhlIGRlc2NyaXB0aW9uIG9mIGVhY2ggc2V0IGlzIGdpdmVuIGJlbG93OjwvcD4KPHA+RWFjaCBzZXQgY29uc2lzdHMgb2YgZml2ZSBsaW5lczsgZWFjaCBsaW5lIHJlcHJlc2VudHMgb25lIHJvdyBvZiBhIGNoZXNzYm9hcmQuIFRoZSBwb3NpdGlvbnMgb2NjdXBpZWQgYnkgd2hpdGUga25pZ2h0cyBhcmUgbWFya2VkIGJ5IDAgYW5kIHRoZSBwb3NpdGlvbnMgb2NjdXBpZWQgYnkgYmxhY2sga25pZ2h0cyBhcmUgbWFya2VkIGJ5IDEuIFRoZSBzcGFjZSBjb3JyZXNwb25kcyB0byB0aGUgZW1wdHkgc3F1YXJlIG9uIGJvYXJkLjwvcD4KPHA+VGhlcmUgaXMgbm8gYmxhbmsgbGluZSBiZXR3ZWVuIHRoZSB0d28gc2V0cyBvZiBpbnB1dC48L3A+CjxwPlRoZSBmaXJzdCBzZXQgb2YgdGhlIHNhbXBsZSBpbnB1dCBiZWxvdyBjb3JyZXNwb25kcyB0byB0aGlzIGNvbmZpZ3VyYXRpb246PC9wPgo8Y2VudGVyPgo8cD48aW1nIHdpZHRoPQ=="206" height="207" src="http://www.Bkjia.com/uploadfile/Collfiles/20140107/20140107095121228.jpg" alt="\">
Output
For each set your task is to find the minimum number of moves leading from the starting input configuration to the final one. If that number is bigger than 10, then output one line stating
Unsolvable in less than 11 move(s).
otherwise output one line stating
Solvable in n move(s).
where n <= 10.
The output for each set is produced in a single line as shown in the sample output.
2
01011
110 1
01110
01010
00100
10110
01 11
10111
01001
00000
Unsolvable in less than 11 move(s).
Solvable in 7 move(s).
(Problem Setter: Piotr Rudnicki, University of Alberta, Canada)
“A man is as great as his dreams.”
題意:給出一個狀態圖,移動其中的騎士恢復到初始的狀態。
典型的隱式圖搜索問題,BFS搜索+哈希,哈希我是用的set實現的,另外要注意的是國際象棋中騎士走的是日字。
#include#include #include #include using namespace std; typedef int state[25]; const int maxn=5000000; const int dx[]={1,2,2,1,-1,-2,-2,-1}; const int dy[]={-2,-1,1,2,2,1,-1,-2}; state st[maxn]; int dist[maxn]; int front,rear,s; set vis; state goal={1,1,1,1,1,0,1,1,1,1,0,0,2,1,1,0,0,0,0,1,0,0,0,0,0}; int try_to_insert(int s)//哈希函數 { int v=0; for(int i=0;i<25;i++) v=v*2+st[s][i]; if(vis.count(v))return 0; vis.insert(v); return 1; } int bfs() { front=1,rear=2; vis.clear(); while(front 10) return -1;//剪枝,超過10步認為不可達 if(memcmp(goal,p,sizeof(p))==0) return front; int i,j,x,y; for(i=0;i<25;i++) if(st[front][i]==2) break; int z=i; x=i/5,y=i%5; for(i=0;i<8;i++) { int newx=x+dx[i]; int newy=y+dy[i]; if(newx>=0&&newx<5&&newy>=0&&newy<5) { state &u=st[rear]; memcpy(&u,&p,sizeof(p)); u[x*5+y]=u[newx*5+newy]; u[newx*5+newy]=2; dist[rear]=dist[front]+1; if(try_to_insert(rear)) rear++; } } front++; } } int main() { cin>>s; string str; getline(cin,str); while(s--) { memset(dist,0,sizeof(dist)); int i,j; for(i=0;i<5;i++) { getline(cin,str); for(j=0;j<5;j++) { if(str[j]!=' ') st[1][i*5+j]=str[j]-'0'; else st[1][i*5+j]=2; } } int d=bfs(); if(d<=0) cout<<"Unsolvable in less than 11 move(s)."<