程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> 分割平面問題

分割平面問題

編輯:C++入門知識

(1) n條直線最多分平面問題
      題目大致如:n條直線,最多可以把平面分為多少個區域。
      析:可能你以前就見過這題目,這充其量是一道初中的思考題。但一個類型的題目還是從簡單的入手,才容易發現規律。當有n-1條直線時,平面最多被分成了f(n-1)個區域。則第n條直線要是切成的區域數最多,就必須與每條直線相交且不能有同一交點。這樣就會得到n-1個交點。這些交點將第n條直線分為2條射線和n-2條線斷。而每條射線和線斷將以有的區域一分為二。這樣就多出了2+(n-2)個區域。
         故:f(n)=f(n-1)+n
                      =f(n-2)+(n-1)+n
                      ……
                      =f(1)+1+2+……+n
                      =n(n+1)/2+1

         (2) 折線分平面(hdu2050)
       根據直線分平面可知,由交點決定了射線和線段的條數,進而決定了新增的區域數。當n-1條折線時,區域數為f(n-1)。為了使增加的區域最多,則折線的兩邊的線段要和n-1條折線的邊,即2*(n-1)條線段相交。那麼新增的線段數為4*(n-1),射線數為2。但要注意的是,折線本身相鄰的兩線段只能增加一個區域。
      
       故:f(n)=f(n-1)+4(n-1)+2-1
                      =f(n-1)+4(n-1)+1
                     =f(n-2)+4(n-2)+4(n-1)+2
                     ……
                     =f(1)+4+4*2+……+4(n-1)+(n-1)  
                     =2n^2-n+1
      (3) 封閉曲線分平面問題
      題目大致如設有n條封閉曲線畫在平面上,而任何兩條封閉曲線恰好相交於兩點,且任何三條封閉曲線不相交於同一點,問這些封閉曲線把平面分割成的區域個數。
       析:當n-1個圓時,區域數為f(n-1).那麼第n個圓就必須與前n-1個圓相交,則第n個圓被分為2(n-1)段線段,增加了2(n-1)個區域。
 
             故: f(n)=f(n-1)+2(n-1)    
                             =f(1)+2+4+……+2(n-1)
                             =n^2-n+2
          (4)平面分割空間問題(hdu1290)
          由二維的分割問題可知,平面分割與線之間的交點有關,即交點決定射線和線段的條數,從而決定新增的區域數。試想在三維中則是否與平面的交線有關呢?當有n-1個平面時,分割的空間數為f(n-1)。要有最多的空間數,則第n個平面需與前n-1個平面相交,且不能有共同的交線。即最多有n-1 條交線。而這n-1條交線把第n個平面最多分割成g(n-1)個區域。(g(n)為(1)中的直線分平面的個數)此平面將原有的空間一分為二,則最多增加g(n-1)個空間。
        
        故:f=f(n-1)+g(n-1)    ps:g(n)=n(n+1)/2+1
                   =f(n-2)+g(n-2)+g(n-1)
                   ……
                  =f(1)+g(1)+g(2)+……+g(n-1)
                 =2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)
                 =(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1
                =(n^3+5n)/6+1


作者:yyf573462811

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved