[cpp]
/*
* 規律:通過打表後發現,在n的范圍內,只有2^x 以及 平方數 和 平方數的2倍符合要求。
* 即:2^1, 2^2,... 1*1, 2*2,... 2*1*1, 2*2*2, 2*3*3... 等等,故只要去重就可以了
* url: http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2390
* stratege: 規律,對數
* Author: Johnsondu
*/
#include <iostream> www.2cto.com
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define LL long long
LL n, t1, t2, t3, t4, t5, t6 ;
int main ()
{
int tcase, cas = 1 ;
scanf ("%d", &tcase) ;
while (tcase --)
{
scanf ("%lld", &n) ;
if (n == 1)
{
printf ("Case %d: 0\n", cas++) ;
continue ;
}
t1 = (LL)sqrt (n*1.0) ; //一共有t1^2 < n, 故有t1 個
t2 = (LL)(log(n*1.0) / log(2.0)) ; // 2^t2 內, 有t2個
t3 = ((LL)(log(n*1.0) / log(2.0)) - 1) / 2 + 1 ; // 2*x*x與2^t2中,與2^3, 2^7,...,重復
t4 = (LL)sqrt (n/2.0) ; // 2*x*x一共有t4個
t5 = (LL) (log(t1*1.0)/log(2.0)) ; //t1中x*x 與 2^t2重復的有t5個
printf ("Case %d: %lld\n", cas++, n - (t1 - t5 + t2 + t4 - t3)) ;
}
return 0 ;
}
/*
打表的代碼:
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define LL long long
#define MAXN 33000
int p[MAXN] ;
bool isPrime[MAXN];
int prilen, a, b ;
void getPrime ()
{
int i ;
for (i = 0; i < MAXN; i ++)
{
isPrime[i] = true ;
}
for (i = 4; i < MAXN; i += 2)
isPrime[i] = false ;
p[0] = 2 ;
prilen = 1 ;
for (i = 3; i < MAXN; i += 2)
{
if (isPrime[i])
{
int tmp = 2 * i ;
p[prilen ++] = i ;
while (tmp < MAXN)
{
isPrime[tmp] = false ;
tmp += i ;
}
}
}
}
int get (int n)
{
int ans = 1 ;
int t = n ;
for (int i = 0; p[i]*p[i] <= t; i ++)
{
if (t % p[i] == 0)
{
int num = 0 ;
while (t % p[i] == 0)
{
num ++ ;
t/=p[i] ;
}
ans = ans * ((int)pow(p[i]*1.0, num+1.0) - 1) / (p[i]-1) ;
}
}
if (t > 1)
ans = ans * ((int)pow(t*1.0, 2.0)-1)/(t-1) ;
return ans ;
}
int main ()
{
getPrime () ;
//int ans = 0 ;
for (int i = 1; i <= 1000; i ++)
{
//printf ("%d -- %d\n", i, get(i)) ;
if (get(i) % 2 != 0)
printf ("%d --- %d\n", i, get(i)) ;
}
return 0 ;
}
1 --- 1
2 --- 3
4 --- 7
8 --- 15
9 --- 13
16 --- 31
18 --- 39
25 --- 31
32 --- 63
36 --- 91
49 --- 57
50 --- 93
64 --- 127
72 --- 195
81 --- 121
98 --- 171
100 --- 217
121 --- 133
128 --- 255
144 --- 403
162 --- 363
169 --- 183
196 --- 399
200 --- 465
225 --- 403
242 --- 399
256 --- 511
288 --- 819
289 --- 307
324 --- 847
338 --- 549
361 --- 381
392 --- 855
400 --- 961
441 --- 741
450 --- 1209
484 --- 931
512 --- 1023
529 --- 553
576 --- 1651
578 --- 921
625 --- 781
648 --- 1815
676 --- 1281
722 --- 1143
729 --- 1093
784 --- 1767
800 --- 1953
841 --- 871
882 --- 2223
900 --- 2821
961 --- 993
968 --- 1995
*/