這道題的意思是給定一個長N的整數序列,用一個大小為K的窗口從頭開始覆蓋,問第1-第N-K次窗口裡面最大的數字和最小的數字。
剛開始還以為優先級隊列可以做,發現無法刪除最前面的元素。估計用線段樹這個題也是可以解得。用這個題學了下單調隊列。
單調隊列正如其名,是一個從小到大排序的隊列,而且能夠保證所有的元素入隊列一次出隊列一次,所以平攤到每個元素的復雜度
就是O(1)。
對於這個題單調隊列的使用。以序列1 3 -1 -3 5 3 6 7舉例。
1)元素類型:一個結構體,包含數字大小和位置,比如(1,1),(3,2)。
2)插入操作:從隊尾開始查找,把隊尾小於待插入元素的元素全部刪除,再加入待插入的元素。這個操作最壞的
情況下是O(n),但是我們采用聚集分析的方法,知道每個元素最多刪除一次,那麼N個元素刪除N次,平攤到每一次
操作的復雜度就是O(1)了。
3)刪除隊首元素:比如本文給的那個題,窗口一直往後移動,每一次移動都會刪除一個元素,所以很可能隊首會是要
刪除的元素,那麼每次移動窗口的元素要進行一次檢查,如果隊首元素失效的話,就刪掉隊首元素。
代碼的實現,我是包裝deque實現了一個模版類。速度很不好,居然跑了11s多才過,幸虧給了12s的時間,看status又500多ms
就過了的。估計數組實現會快很多。
代碼如下:
#include <stdio.h>
#include <deque>
#include <algorithm>
using namespace std;
#define MAX_N (1000000 + 100)
int nNum[MAX_N];
int nN, nK;
struct Small
{
int nValue;
int nIndex;
Small(int nV, int index):nValue(nV), nIndex(index) {}
bool operator < (const Small& a) const
{
return nValue < a.nValue;
}
};
struct Big
{
int nValue;
int nIndex;
Big(int nV, int index):nValue(nV), nIndex(index) {}
bool operator < (const Big& a) const
{
return nValue > a.nValue;
}
};
//單調隊列
template <typename T> class Monoque
{
deque<T> dn;
public:
void Insert(T node)
{
int nPos = dn.size() - 1;
while (nPos >=0 && node < dn[nPos])
{
--nPos;
dn.pop_back();
}
dn.push_back(node);
}
int Top()
{
return dn.front().nValue;
}
void Del(int nBeg, int nEnd)
{
if (dn.size() > 0)
{
if (dn.front().nIndex < nBeg || dn.front().nIndex > nEnd)
{
dn.pop_front();
}
}
}
};
int main()
{
while (scanf("%d%d", &nN, &nK) == 2)
{
int i;
for (i = 0; i < nN; ++i)
{
scanf("%d", &nNum[i]);
}
Monoque<Small> minQ;
Monoque<Big> maxQ;
for (i = 0; i < nK; ++i)
{
minQ.Insert(Small(nNum[i], i));
}
for (i = 0; i < nN - nK; ++i)
{
printf("%d ", minQ.Top());
minQ.Insert(Small(nNum[i + nK], i + nK));
minQ.Del(i + 1, i + nK);
} www.2cto.com
printf("%d\n", minQ.Top());
for (i = 0; i < nK; ++i)
{
maxQ.Insert(Big(nNum[i], i));
}
for (i = 0; i < nN - nK; ++i)
{
printf("%d ", maxQ.Top());
maxQ.Insert(Big(nNum[i + nK], i + nK));
maxQ.Del(i + 1, i + nK);
}
printf("%d\n", maxQ.Top());
}
return 0;
}