程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> poj 3764 The xor-longest Path 字典樹 + Xor

poj 3764 The xor-longest Path 字典樹 + Xor

編輯:C++入門知識

 這題意思很簡單。求一棵樹裡面的一條路徑,使得其異或權(就是將路徑裡面所有邊的權值異
或起來)最大。
   這個題有兩步。第一步是假定根為節點0,求出根到其它節點的異或距離,保存在數組xor裡面,
這個dfs一下即可。然後,用xor[i]^xor[j]就能代表節點i到節點j的路徑。這個結論可以這麼看。
如果,i和j之間的路徑經過根節點,那麼上面的結論肯定是正確的。如果,該路徑不經過根,那麼
xor[i]和xor[j]必定保護從根到某個節點的相同的一段子路徑,根據異或的性質,這段子路徑會
被消掉,所以這個結論也是這確的。。。
   第二步就是枚舉,xor[i]^xor[j]使得結果最大了。如果直接暴力,平方的算法肯定會超時的。
由於每個值可以表示成2進制,如果把其它xor值都保存在字典樹裡面,用當前的xor[i]去字典樹
裡面,一遍就可以找到異或最大值。
   另外,由於樹的點數太多,只能用鄰接表,用vector模擬鄰接表果斷超時了。。。
改成靜態鏈表才過。。。

   代碼如下:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;

const int MAX = 100010;
int nXor[MAX];
bool bVis[MAX];
int nFirst[MAX];
struct Edge
{
    int nE;
    int nW;
    int nNext;
};
Edge egs[MAX * 2];

struct Node
{
    Node* pSons[2];
};
Node nodes[MAX * 32];
Node* pRoot = &nodes[0];
int nNew;

void GetBCode(int nL, int* nBCode, int& nLen)
{
    nLen = 0;
    while (nLen <= 30)
    {
        nBCode[nLen++] = nL % 2;
        nL >>= 1;
    }
    reverse(nBCode, nBCode + nLen);
}

void Insert(int nL)
{
    int nLen = 0;
    int i = 0;
    int nBCode[32];

    GetBCode(nL, nBCode, nLen);
    Node* pNode = pRoot;

    while (i < nLen)
    {
        if (pNode->pSons[nBCode[i]])
        {
            pNode = pNode->pSons[nBCode[i]];
        }
        else
        {
            memset(nodes + nNew, 0, sizeof(nodes[nNew]));
            pNode->pSons[nBCode[i]] = nodes + nNew;
            pNode = nodes + nNew;
            ++nNew;
        }
        ++i;
    }
}

int FindMax(int nL)
{
    int nLen = 0;
    int nAns = 0;
    int i = 0;
    int nBCode[32];
    Node* pNode = pRoot;
   
    GetBCode(nL, nBCode, nLen);
    while (i < nLen)
    {
        int nBest = (nBCode[i] == 0 ? 1 : 0);
        int nBad = (nBCode[i] == 0 ? 0 : 1);
        if (pNode->pSons[nBest])
        {
            nAns = 2 * nAns + nBest;
            pNode = pNode->pSons[nBest];
        }
        else if (pNode->pSons[nBad])
        {
            nAns = 2 * nAns + nBad;
            pNode = pNode->pSons[nBad];
        }
        else break;
        ++i;
    }

    return nAns ^ nL;
}

void Dfs(int nV, int nL)
{
    nXor[nV] = nL;
    bVis[nV] = true;
    for (int e = nFirst[nV]; e != -1; e = egs[e].nNext)
    {
        if (!bVis[egs[e].nE])
        {
            Dfs(egs[e].nE, nL ^ egs[e].nW);
        }
    }
}

int main()
{
    int nN;
    int nU, nV, nW;
   
    while (scanf("%d", &nN) == 1)
    {
        for (int i = 0; i < nN; ++i) nFirst[i] = -1;
        for (int i = 1, j = 0; i < nN; ++i)
        {
            scanf("%d%d%d", &nU, &nV, &nW);
            egs[j].nE = nV;
            egs[j].nW = nW;
            egs[j].nNext = nFirst[nU];
            nFirst[nU] = j++;
            egs[j].nE = nU;
            egs[j].nW = nW;
            egs[j].nNext = nFirst[nV];
            nFirst[nV] = j++;
        }

        memset(bVis, false, sizeof(bool) * nN);
        Dfs(0, 0);

        memset(&nodes[0], 0, sizeof(Node));
        nNew = 1;
        int nAns = 0;
       
        for (int i = 0; i < nN; ++i)
        {
            nAns = max(nAns, FindMax(nXor[i]));
            Insert(nXor[i]);
        }
        printf("%d\n", nAns);
    }

    return 0;
}

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved