函數功能:
把格式化的數據寫入某個字符串
頭文件:
stdio.h
函數原型:
int sprintf( char *buffer, const char *format, [ argument] … );
參數列表:
buffer:char型指針,指向欲寫入的字符串地址。
format:char型指針,指向的內存裡面存放了格式字符串。
[argument]...:可選參數,可以是任何類型的數據。
返回值:字符串長度(strlen)
相關函數:
[cpp]
int sprintf_s(char *buffer,size_t sizeOfBuffer,const char *format, [argument] ... );
int _sprintf_s_l(char *buffer,size_t sizeOfBuffer,const char *format,locale_t locale ,[argument] ... );
int swprintf_s(wchar_t *buffer,size_t sizeOfBuffer,const wchar_t *format ,[argument]...);
int _swprintf_s_l(wchar_t *buffer,size_t sizeOfBuffer,const wchar_t *format,locale_t locale ,[argument]…);
template <size_t size>
int sprintf_s(char (&buffer)[size],const char *format, [argument] ... ); //僅存在於C++
template <size_t size>
int swprintf_s(wchar_t (&buffer)[size],const wchar_t *format ,[argument]...); //僅存在於C++
字串格式化命令,主要功能是把格式化的數據寫入某個字符串中。sprintf 是個變參函數,使用時經常出問題,而且只要出問題通常就是能導致程序崩潰的內存訪問錯
誤,但好在由sprintf 誤用導致的問題雖然嚴重,卻很容易找出,無非就是那麼幾種情況,通常用眼睛再把出錯的代碼多看幾眼就看出來了。
參數說明及應用舉例
sprintf格式的規格如下所示。[]中的部分是可選的。
%[指定參數][標識符][寬度][.精度]指示符
若想輸出`%'本身時, 請這樣`%%'處理。
1. 處理字符方向。負號時表示從後向前處理。
2. 填空字元。 0 的話表示空格填 0;空格是內定值,表示空格就放著。
3. 字符總寬度。為最小寬度。
4. 精確度。指在小數點後的浮點數位數。
轉換字符
%% 印出百分比符號,不轉換。
%c 整數轉成對應的 ASCII 字元。
%d 整數轉成十進位。
%f 倍精確度數字轉成浮點數。
%o 整數轉成八進位。
%s 整數轉成字符串。
%x 整數轉成小寫十六進位。
%X 整數轉成大寫十六進位。
[cpp]
$money = 123.1
$formatted = sprintf ("%06.2f", $money); // 此時變數 $ formatted 值為 "123.10"
$formatted = sprintf ("%08.2f", $money); // 此時變數 $ formatted 值為 "00123.10"
$formatted = sprintf ("%-08.2f", $money); // 此時變數 $ formatted 值為 "123.1000"
$formatted = sprintf ("%.2f%%", 0.95 * 100); // 格式化為百分比
解釋:
開始符
0是 "填空字元" 表示,如果長度不足時就用0來填滿。
8格式化後總長度
2f小數位長度,即2位
第3行值為"00123.10" 解釋:
因為2f是(2位)+小數點符號(1位)+前面123(3位)=6位,總長度為8位,故前面用[填空字元]0表示,即00123.10
第4行值為"123.1000" 解釋:
-號為反向操作,然後填空字元0添加在最後面了
在將各種類型的數據構造成字符串時,sprintf 的強大功能很少會讓你失望。由於sprintf 跟printf 在用法上幾乎一樣,只是打印的目的地不同而已,前者打印到字符串中,後者則直接在命令行上輸出。這也導致sprintf 比printf 有用得多。
sprintf 是個變參函數,定義如下:
int sprintf( char *buffer, const char *format [, argument] ... );
除了前兩個參數類型固定外,後面可以接任意多個參數。而它的精華,顯然就在第二個參數:
格式化字符串上。
printf 和sprintf 都使用格式化字符串來指定串的格式,在格式串內部使用一些以“%”開頭的格式說明符(format specifications)來占據一個位置,在後邊的變參列表中提供相應的變量,最終函數就會用相應位置的變量來替代那個說明符,產生一個調用者想要的字符串。
格式化數字字符串sprintf 最常見的應用之一莫過於把整數打印到字符串中,所以,sprintf 在大多數場合可以替代itoa。
如:
//把整數123 打印成一個字符串保存在s 中。
sprintf(s, "%d", 123); //產生"123"
可以指定寬度,不足的左邊補空格:
sprintf(s, "%8d%8d", 123, 4567); //產生:" 123 4567"
當然也可以左對齊:
sprintf(s, "%-8d%8d", 123, 4567); //產生:"123 4567"
也可以按照16 進制打印:
sprintf(s, "%8x", 4567); //小寫16 進制,寬度占8 個位置,右對齊
sprintf(s, "%-8X", 4568); //大寫16 進制,寬度占8 個位置,左對齊
這樣,一個整數的16 進制字符串就很容易得到,但我們在打印16 進制內容時,通常想要一種左邊補0 的等寬格式,那該怎麼做呢?很簡單,在表示寬度的數字前面加個0 就可以了。
sprintf(s, "%08X", 4567); //產生:"000011D7"
上面以”%d”進行的10 進制打印同樣也可以使用這種左邊補0 的方式。
這裡要注意一個符號擴展的問題:比如,假如我們想打印短整數(short)-1 的內存16 進制表示形式,在Win32 平台上,一個short 型占2 個字節,所以我們自然希望用4 個16 進制數字來打印它:
short si = -1;
sprintf(s, "%04X", si);
產生“FFFFFFFF”,怎麼回事?因為spritnf 是個變參函數,除了前面兩個參數之外,後面的參數都不是類型安全的,函數更沒有辦法僅僅通過一個“%X”就能得知當初函數調用前參數壓棧時被壓進來的到底是個4 字節的整數還是個2 字節的短整數,所以采取了統一4 字節的處理方式,導致參數壓棧時做了符號擴展,擴展成了32 位的整數-1,打印時4 個位置不夠了,就把32 位整數-1 的8 位16 進制都打印出來了。
如果你想看si 的本來面目,那麼就應該讓編譯器做0 擴展而不是符號擴展(擴展時二進制左邊補0 而不是補符號位):
sprintf(s, "%04X", (unsigned short)si);
就可以了。或者:
unsigned short si = -1;
sprintf(s, "%04X", si);
sprintf 和printf 還可以按8 進制打印整數字符串,使用”%o”。注意8 進制和16 進制都不會打印出負數,都是無符號的,實際上也就是變量的內部編碼的直接的16 進制或8 進制表示。
控制浮點數打印格式
浮點數的打印和格式控制是sprintf 的又一大常用功能,浮點數使用格式符”%f”控制,默認保留小數點後6 位數字,比如:
sprintf(s, "%f", 3.1415926); //產生"3.141593"
但有時我們希望自己控制打印的寬度和小數位數,這時就應該使用:”%m /nf”格式,其中m 表示打印的寬度,n 表示小數點後的位數。比如:
sprintf(s, "%10.3f", 3.1415626); //產生:" 3.142"
sprintf(s, "%-10.3f", 3.1415626); //產生:"3.142 "
sprintf(s, "%.3f", 3.1415626); //不指定總寬度,產生:"3.142"
注意一個問題,你猜
int i = 100;
sprintf(s, "%.2f", i);
會打出什麼東東來?“100.00”?對嗎?自己試試就知道了,同時也試試下面這個:
sprintf(s, "%.2f", (double)i);
第一個打出來的肯定不是正確結果,原因跟前面提到的一樣,參數壓棧時調用者並不知道跟i相對應的格式控制符是個”%f”。而函數執行時函數本身則並不知道當年被壓入棧裡的是個整數,於是可憐的保存整數i 的那4 個字節就被不由分說地強行作為浮點數格式來解釋了,整個亂套了。不過,如果有人有興趣使用手工編碼一個浮點數,那麼倒可以使用這種方法來檢驗一下你手工編排的結果是否正確。
字符/Ascii 碼對照
我們知道,在C/C++語言中,char 也是一種普通的scalable 類型,除了字長之外,它與short,int,long 這些類型沒有本質區別,只不過被大家習慣用來表示字符和字符串而已。(或許當年該把這個類型叫做“byte”,然後現在就可以根據實際情況,使用byte 或short 來把char 通過typedef 定義出來,這樣更合適些)於是,使用”%d”或者”%x”打印一個字符,便能得出它的10 進制或16 進制的ASCII 碼;反過來,使用”%c”打印一個整數,便可以看到它所對應的ASCII字符。以下程序段把所有可見字符的ASCII 碼對照表打印到屏幕上(這裡采用printf,注意”#”與”%X”合用時自動為16 進制數增加”0X”前綴):
for(int i = 32; i < 127; i++) {
printf("[ %c ]: %3d 0x%#04X\n", i, i, i);
}
連接字符串
sprintf 的格式控制串中既然可以插入各種東西,並最終把它們“連成一串”,自然也就能夠連接字符串,從而在許多場合可以替代strcat,但sprintf 能夠一次連接多個字符串(自然也可以同時在它們中間插入別的內容,總之非常靈活)。比如:
char* who = "I";
char* whom = "CSDN";
sprintf(s, "%s love %s.", who, whom); //產生:"I love CSDN. "
strcat 只能連接字符串(一段以’’結尾的字符數組或叫做字符緩沖,null-terminated-string),但有時我們有兩段字符緩沖區,他們並不是以 ’’結尾。比如許多從第三方庫函數中返回的字符數組,從硬件或者網絡傳輸中讀進來的字符流,它們未必每一段字符序列後面都有個相應的’’來結尾。如果直接連接,不管是sprintf 還是strcat 肯定會導致非法內存操作,而strncat 也至少要求第一個參數是個null-terminated-string,那該怎麼辦呢?我們自然會想起前面介紹打印整數和浮點數時可以指定寬度,字符串也一樣的。比如:
char a1[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char a2[] = {'H', 'I', 'J', 'K', 'L', 'M', 'N'};
如果:
sprintf(s, "%s%s", a1, a2); //Don't do that!
十有八九要出問題了。是否可以改成:
sprintf(s, "%7s%7s", a1, a2);
也沒好到哪兒去,正確的應該是:
sprintf(s, "%.7s%.7s", a1, a2);//產生:"ABCDEFGHIJKLMN"
這可以類比打印浮點數的”%m/nf”,在”%m.ns”中,m 表示占用寬度(字符串長度不足時補空格,超出了則按照實際寬度打印),n 才表示從相應的字符串中最多取用的字符數。通常在打印字符串時m 沒什麼大用,還是點號後面的n 用的多。自然,也可以前後都只取部分字符:
sprintf(s, "%.6s%.5s", a1, a2);//產生:"ABCDEFHIJKL"
在許多時候,我們或許還希望這些格式控制符中用以指定長度信息的數字是動態的,而不是靜態指定的,因為許多時候,程序要到運行時才會清楚到底需要取字符數組中的幾個字符,這種動態的寬度/精度設置功能在sprintf 的實現中也被考慮到了,sprintf 采用”*”來占用一個本來需要一個指定寬度或精度的常數數字的位置,同樣,而實際的寬度或精度就可以和其它被打印的變量一樣被提供出來,於是,上面的例子可以變成:
sprintf(s, "%.*s%.*s", 7, a1, 7, a2);
或者:
sprintf(s, "%.*s%.*s", sizeof(a1), a1, sizeof(a2), a2);
實際上,前面介紹的打印字符、整數、浮點數等都可以動態指定那些常量值,比如:
sprintf(s, "%-*d", 4, 'A'); //產生"65 "
sprintf(s, "%#0*X", 8, 128); //產生"0X000080","#"產生0X
sprintf(s, "%*.*f", 10, 2, 3.1415926); //產生" 3.14"
打印地址信息
有時調試程序時,我們可能想查看某些變量或者成員的地址,由於地址或者指針也不過是個32 位的數,你完全可以使用打印無符號整數的”%u”把他們打印出來:
sprintf(s, "%u", &i);
不過通常人們還是喜歡使用16 進制而不是10 進制來顯示一個地址:
sprintf(s, "%08X", &i);
然而,這些都是間接的方法,對於地址打印,sprintf 提供了專門的”%p”:
sprintf(s, "%p", &i);
我覺得它實際上就相當於:
sprintf(s, "%0*x", 2 * sizeof(void *), &i);
利用sprintf 的返回值
較少有人注意printf/sprintf 函數的返回值,但有時它卻是有用的,spritnf 返回了本次函數調用最終打印到字符緩沖區中的字符數目。也就是說每當一次sprinf 調用結束以後,你無須再調用一次strlen 便已經知道了結果字符串的長度。如:
int len = sprintf(s, "%d", i);
對於正整數來說,len 便等於整數i 的10 進制位數。
下面的是個完整的例子,產生10 個[0, 100)之間的隨機數,並將他們打印到一個字符數組s 中,
以逗號分隔開。
[cpp]
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main() {
srand(time(0));
char s[64];
int offset = 0;
for(int i = 0; i < 10; i++) {
offset += sprintf(s + offset, "%d,", rand() % 100);
}
s[offset - 1] = '\n';//將最後一個逗號換成換行符。
printf(s);
return 0;
}
設想當你從數據庫中取出一條記錄,然後希望把他們的各個字段按照某種規則連接成一個字符串時,就可以使用這種方法,從理論上講,他應該比不斷的strcat 效率高,因為strcat 每次調用都需要先找到最後的那個’’的位置,而在上面給出的例子中,我們每次都利用sprintf 返回值把這個位置直接記下來了。
使用sprintf 的常見問題
sprintf 是個變參函數,使用時經常出問題,而且只要出問題通常就是能導致程序崩潰的內存訪
問錯誤,但好在由sprintf 誤用導致的問題雖然嚴重,卻很容易找出,無非就是那麼幾種情況,通
常用眼睛再把出錯的代碼多看幾眼就看出來了。
sprintf_s()是sprintf()的安全版本,通過指定緩沖區長度來避免sprintf()存在的溢出風險 。在使用VS2008時如果你使用了sprintf函數,那麼編譯器會發出警告:使用sprintf存在風險,建議使用sprintf_s。這個安全版本的原型是:
int sprintf_s(char *buffer,size_t sizeOfBuffer,const char *format [,argument] ... );
緩沖區溢出
第一個參數的長度太短了,沒的說,給個大點的地方吧。當然也可能是後面的參數的問
題,建議變參對應一定要細心,而打印字符串時,盡量使用”%.ns”的形式指定最大字符數。
忘記了第一個參數
低級得不能再低級問題,用printf 用得太慣了。//偶就常犯。:。(
變參對應出問題
通常是忘記了提供對應某個格式符的變參,導致以後的參數統統錯位,檢查檢查吧。尤
其是對應”*”的那些參數,都提供了嗎?不要把一個整數對應一個”%s”,編譯器會覺得你
欺她太甚了(編譯器是obj 和exe 的媽媽,應該是個女的,:P)。
strftime
sprnitf 還有個不錯的表妹:strftime,專門用於格式化時間字符串的,用法跟她表哥很像,也
是一大堆格式控制符,只是畢竟小姑娘家心細,她還要調用者指定緩沖區的最大長度,可能是為
了在出現問題時可以推卸責任吧。這裡舉個例子:
time_t t = time(0);
//產生"YYYY-MM-DD hh:mm:ss"格式的字符串。
char s[32];
strftime(s, sizeof(s), "%Y-%m-%d %H:%M:%S", localtime(&t));
sprintf 在MFC 中也能找到他的知音:CString::Format,strftime 在MFC 中自然也有她的同道:
CTime::Format,這一對由於從面向對象哪裡得到了贊助,用以寫出的代碼更覺優雅。