遞推問題實現起來很簡單,但得到遞推公式確實很麻煩,就像DP一樣。 分析(部分出自HDU的PPT): 設:F(n)表示n個人的合法隊列,則: 按照最後一個人的性別分析,他要麼是男,要麼是女,所以可以分兩大類討論: 1、如果n個人的合法隊列的最後一個人是男,則對前面n-1個人的隊列沒有任何限制,他只要站在最後即可,所以,這種情況一共有F(n-1); 2、如果n個人的合法隊列的最後一個人是女,則要求隊列的第n-1個人務必也是女生,這就是說,限定了最後兩個人必須都是女生,這又可以分兩種情況: (1)、如果隊列的前n-2個人是合法的隊列,則顯然後面再加兩個女生,也一定是合法的,這種情況有F(n-2); (2)難點在於,即使前面n-2個人不是合法的隊列,加上兩個女生也有可能是合法的,當然,這種長度為n-2的不合法隊列,不合法的地方必須是尾巴,就是說,這裡說的長度是n-2的不合法串的形式必須是“F(n-4)+男+女”,這種情況一共有F(n-4). 所以遞推公式為F(n)=F(n-1)+F(n-2)+F(n-4). 另外需要注意的是 這個遞推式的數據范圍到了1000,int甚至long long 都已經無法承載最大邊界,所以我使用了前兩天貼出的大數類。 [cpp] #include<iostream> #include<string> #include<iomanip> #include<algorithm> using namespace std; #define MAXN 9999 #define MAXSIZE 10 #define DLEN 4 class BigNum { private: int a[500]; //可以控制大數的位數 int len; //大數長度 public: BigNum(){ len = 1;memset(a,0,sizeof(a)); } //構造函數 BigNum(const int); //將一個int類型的變量轉化為大數 BigNum(const char*); //將一個字符串類型的變量轉化為大數 BigNum(const BigNum &); //拷貝構造函數 BigNum &operator=(const BigNum &); //重載賦值運算符,大數之間進行賦值運算 friend istream& operator>>(istream&, BigNum&); //重載輸入運算符 friend ostream& operator<<(ostream&, BigNum&); //重載輸出運算符 BigNum operator+(const BigNum &) const; //重載加法運算符,兩個大數之間的相加運算 BigNum operator-(const BigNum &) const; //重載減法運算符,兩個大數之間的相減運算 BigNum operator*(const BigNum &) const; //重載乘法運算符,兩個大數之間的相乘運算 BigNum operator/(const int &) const; //重載除法運算符,大數對一個整數進行相除運算 BigNum operator^(const int &) const; //大數的n次方運算 int operator%(const int &) const; //大數對一個int類型的變量進行取模運算 bool operator>(const BigNum & T)const; //大數和另一個大數的大小比較 bool operator>(const int & t)const; //大數和一個int類型的變量的大小比較 void print(); //輸出大數 }; BigNum::BigNum(const int b) //將一個int類型的變量轉化為大數 { int c,d = b; len = 0; memset(a,0,sizeof(a)); while(d > MAXN) { c = d - (d / (MAXN + 1)) * (MAXN + 1); d = d / (MAXN + 1); a[len++] = c; } a[len++] = d; } BigNum::BigNum(const char*s) //將一個字符串類型的變量轉化為大數 { int t,k,index,l,i; memset(a,0,sizeof(a)); l=strlen(s); len=l/DLEN; if(l%DLEN) len++; index=0; for(i=l-1;i>=0;i-=DLEN) { t=0; k=i-DLEN+1; if(k<0) k=0; for(int j=k;j<=i;j++) t=t*10+s[j]-'0'; a[index++]=t; } } BigNum::BigNum(const BigNum & T) : len(T.len) //拷貝構造函數 { int i; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = T.a[i]; } BigNum & BigNum::operator=(const BigNum & n) //重載賦值運算符,大數之間進行賦值運算 { int i; len = n.len; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = n.a[i]; return *this; } istream& operator>>(istream & in, BigNum & b) //重載輸入運算符 { char ch[MAXSIZE*4]; int i = -1; in>>ch; int l=strlen(ch); int count=0,sum=0; for(i=l-1;i>=0;) { sum = 0; int t=1; for(int j=0;j<4&&i>=0;j++,i--,t*=10) { sum+=(ch[i]-'0')*t; } b.a[count]=sum; count++; } b.len =count++; return in; } ostream& operator<<(ostream& out, BigNum& b) //重載輸出運算符 { int i; cout << b.a[b.len - 1]; for(i = b.len - 2 ; i >= 0 ; i--) { cout.width(DLEN); cout.fill('0'); cout << b.a[i]; } return out; } BigNum BigNum::operator+(const BigNum & T) const //兩個大數之間的相加運算 { BigNum t(*this); int i,big; //位數 big = T.len > len ? T.len : len; for(i = 0 ; i < big ; i++) { t.a[i] +=T.a[i]; if(t.a[i] > MAXN) { t.a[i + 1]++; t.a[i] -=MAXN+1; } } if(t.a[big] != 0) t.len = big + 1; else t.len = big; return t; } BigNum BigNum::operator-(const BigNum & T) const //兩個大數之間的相減運算 { int i,j,big; bool flag; BigNum t1,t2; if(*this>T) { t1=*this; t2=T; flag=0; } else { t1=T; t2=*this; flag=1; } big=t1.len; for(i = 0 ; i < big ; i++) { if(t1.a[i] < t2.a[i]) { j = i + 1; while(t1.a[j] == 0) j++; t1.a[j--]--; while(j > i) t1.a[j--] += MAXN; t1.a[i] += MAXN + 1 - t2.a[i]; } else t1.a[i] -= t2.a[i]; } t1.len = big; while(t1.a[len - 1] == 0 && t1.len > 1) { t1.len--; big--; } if(flag) t1.a[big-1]=0-t1.a[big-1]; return t1; } BigNum BigNum::operator*(const BigNum & T) const //兩個大數之間的相乘運算 { BigNum ret; int i,j,up; int temp,temp1; for(i = 0 ; i < len ; i++) { up = 0; for(j = 0 ; j < T.len ; j++) { temp = a[i] * T.a[j] + ret.a[i + j] + up; if(temp > MAXN) { temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = temp1; } else { up = 0; ret.a[i + j] = temp; } } if(up != 0) ret.a[i + j] = up; } ret.len = i + j; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } BigNum BigNum::operator/(const int & b) const //大數對一個整數進行相除運算 { BigNum ret; int i,down = 0; for(i = len - 1 ; i >= 0 ; i--) { ret.a[i] = (a[i] + down * (MAXN + 1)) / b; down = a[i] + down * (MAXN + 1) - ret.a[i] * b; } ret.len = len; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } int BigNum::operator %(const int & b) const //大數對一個int類型的變量進行取模運算 { int i,d=0; for (i = len-1; i>=0; i--) { d = ((d * (MAXN+1))% b + a[i])% b; } return d; } BigNum BigNum::operator^(const int & n) const //大數的n次方運算 { BigNum t,ret(1); int i; if(n<0) exit(-1); if(n==0) return 1; if(n==1) return *this; int m=n; while(m>1) { t=*this; for( i=1;i<<1<=m;i<<=1) { t=t*t; } m-=i; ret=ret*t; if(m==1) ret=ret*(*this); } return ret; } bool BigNum::operator>(const BigNum & T) const //大數和另一個大數的大小比較 { int ln; if(len > T.len) return true; else if(len == T.len) { ln = len - 1; while(a[ln] == T.a[ln] && ln >= 0) ln--; if(ln >= 0 && a[ln] > T.a[ln]) return true; else return false; } else return false; } bool BigNum::operator >(const int & t) const //大數和一個int類型的變量的大小比較 { BigNum b(t); return *this>b; } void BigNum::print() //輸出大數 { int i; cout << a[len - 1]; for(i = len - 2 ; i >= 0 ; i--) { cout.width(DLEN); cout.fill('0'); cout << a[i]; } cout << endl; } BigNum que[1202]; //上邊不是主要作用。。 int main() { que[0]=1; que[1]=1; que[2]=2; que[3]=4; for(int i=4;i<=1000;i++) { que[i]=que[i-1]+que[i-2]+que[i-4]; } int tar; while(cin>>tar) { que[tar].print(); } return 0; }