Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime. Note: the number of first circle should always be 1. Input n (0 < n < 20). Output The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order. You are to write a program that completes above process. Print a blank line after each case. Sample Input 6 8 Sample Output Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2 Source Asia 1996, Shanghai (Mainland China) Recommend JGShining [cpp] /********************************* * 日期:2013-3-14 * 作者:SJF0115 * 題號: HDU 題目1016: Prime Ring Problem * 來源:http://acm.hdu.edu.cn/showproblem.php?pid=1016 * 結果:AC * 來源:Asia 1996, Shanghai (Mainland China) * 總結: **********************************/ #include<stdio.h> #include<string.h> int prime[] = {0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0}; int visited[21]; int value[21]; int n; void DFS(int step){ int i; //最後一個數還需要和1判斷一下相加是否是素數 if(step == n+1){ if(prime[value[step - 1] + 1]){ //輸出素數環 for(i = 1;i <= n;i++){ printf("%d%c",value[i],i==n?'\n':' '); } } } else{ for(i = 2;i <= n;i++){ //該數據沒有使用過並且與前一個數相加為素數 if(!visited[i] && prime[i + value[step-1]]){ //標記已訪問 visited[i] = 1; value[step] = i; DFS(step+1); visited[i] = 0; } } } } int main(){ int caseNum = 1; while(scanf("%d",&n) != EOF){ memset(visited,0,n); printf("Case %d:\n",caseNum); //素數環的第一個數永遠都是1 value[1] = 1; DFS(2); printf("\n"); caseNum ++; } return 0; } /********************************* * 日期:2013-3-14 * 作者:SJF0115 * 題號: HDU 題目1016: Prime Ring Problem * 來源:http://acm.hdu.edu.cn/showproblem.php?pid=1016 * 結果:AC * 來源:Asia 1996, Shanghai (Mainland China) * 總結: **********************************/ #include<stdio.h> #include<string.h> int prime[] = {0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0}; int visited[21]; int value[21]; int n; void DFS(int step){ int i; //最後一個數還需要和1判斷一下相加是否是素數 if(step == n+1){ if(prime[value[step - 1] + 1]){ //輸出素數環 for(i = 1;i <= n;i++){ printf("%d%c",value[i],i==n?'\n':' '); } } } else{ for(i = 2;i <= n;i++){ //該數據沒有使用過並且與前一個數相加為素數 if(!visited[i] && prime[i + value[step-1]]){ //標記已訪問 visited[i] = 1; value[step] = i; DFS(step+1); visited[i] = 0; } } } } int main(){ int caseNum = 1; while(scanf("%d",&n) != EOF){ memset(visited,0,n); printf("Case %d:\n",caseNum); //素數環的第一個數永遠都是1 value[1] = 1; DFS(2); printf("\n"); caseNum ++; } return 0; }