程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> C++入門知識 >> CF 317A(Perfect Pair-廣義Fib序列p,q=1性質2&加法增長極)

CF 317A(Perfect Pair-廣義Fib序列p,q=1性質2&加法增長極)

編輯:C++入門知識

A. Perfect Pair
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Let us call a pair of integer numbers m-perfect, if at least one number in the pair is greater than or equal to m. Thus, the pairs (3, 3) and (0, 2) are 2-perfect while the pair (-1, 1) is not.

Two integers x, y are written on the blackboard. It is allowed to erase one of them and replace it with the sum of the numbers, (x + y).

What is the minimum number of such operations one has to perform in order to make the given pair of integers m-perfect?

Input
Single line of the input contains three integers x, y and m ( - 1018 ≤ x, y, m ≤ 1018).

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preffered to use the cin, cout streams or the %I64dspecifier.

Output
Print the minimum number of operations or "-1" (without quotes), if it is impossible to transform the given pair to the m-perfect one.

Sample test(s)
input
1 2 5
output
2
input
-1 4 15
output
4
input
0 -1 5
output
-1
Note
In the first sample the following sequence of operations is suitable: (1, 2)  (3, 2)  (5, 2).

In the second sample: (-1, 4)  (3, 4)  (7, 4)  (11, 4)  (15, 4).

Finally, in the third sample x, y cannot be made positive, hence there is no proper sequence of operations.

 

首先,這題盡管我用了Sx的公式(可二分),但是可以暴力(加法增長極很大)

只需要把負數弄好就行.


[cpp]
#include<cstdio>  
#include<cstdlib>  
#include<cstring>  
#include<iostream>  
#include<algorithm>  
#include<functional>  
#include<cmath>  
#include<cctype>  
using namespace std; 
#define For(i,n) for(int i=1;i<=n;i++)  
#define Rep(i,n) for(int i=0;i<n;i++)  
#define Fork(i,k,n) for(int i=k;i<=n;i++)  
#define ForD(i,n) for(int i=n;i;i--)  
#define Forp(x) for(int p=pre[x];p;p=next[p])  
#define RepD(i,n) for(int i=n;i>=0;i--)  
#define MEM(a) memset(a,0,sizeof(a))  
#define MEMI(a) memset(a,127,sizeof(a))  
#define MEMi(a) memset(a,128,sizeof(a))  
#define INF (1e18)  
#define MAXN (1000000)  
long long x,y,m; 
long long f[MAXN]={0,1,1}; 
int n=0; 
long long work() 

    if (max(x,y)>=m) return 0; 
    long long j=0; 
    if (x==0&&y==0) return -1; 
    if (x<0&&y<0) return -1; 
    bool b=0; 
    while (max(x,y)<m) 
    { 
        if (x+y<=min(x,y)) return -1; 
        if (x>y) swap(x,y); 
        if (x>0&&y>0) 
        { 
            int k=1; 
            while (f[k]*x+f[k+1]*y<m) k++; 
            j+=k; 
            return j;  
        }    
        else if (!b&&x<0&&y>0) 
        { 
            long long k=-x/y; 
            if (m<0) k=(m-x)/y; 
            j+=k; 
            x+=k*y; 
            b=1; 
        } 
        else 
        { 
            j++; 
            x+=y; 
        }    
    } 
    return j; 

int main() 

//  freopen(".in","r",stdin);  
//  freopen(".out","w",stdout);  
 
    for(n=3;f[n-1]<INF;n++) f[n]=f[n-1]+f[n-2]; 
    n--; 
//  For(i,n) cout<<f[i]<<' ';  
    while (cin>>x>>y>>m) 
        cout<<work()<<endl; 
 
    return 0; 

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (1e18)
#define MAXN (1000000)
long long x,y,m;
long long f[MAXN]={0,1,1};
int n=0;
long long work()
{
 if (max(x,y)>=m) return 0;
 long long j=0;
 if (x==0&&y==0) return -1;
 if (x<0&&y<0) return -1;
 bool b=0;
 while (max(x,y)<m)
 {
  if (x+y<=min(x,y)) return -1;
  if (x>y) swap(x,y);
  if (x>0&&y>0)
  {
   int k=1;
   while (f[k]*x+f[k+1]*y<m) k++;
   j+=k;
   return j;
  } 
  else if (!b&&x<0&&y>0)
  {
   long long k=-x/y;
   if (m<0) k=(m-x)/y;
   j+=k;
   x+=k*y;
   b=1;
  }
  else
  {
   j++;
   x+=y;
  } 
 }
 return j;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);

 for(n=3;f[n-1]<INF;n++) f[n]=f[n-1]+f[n-2];
 n--;
// For(i,n) cout<<f[i]<<' ';
 while (cin>>x>>y>>m)
  cout<<work()<<endl;

 return 0;
}

 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved