Catch That Cow
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 36079 Accepted: 11123
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17Sample Output
4Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
完全是BFS,沒有什麼技巧,主要還是用VISIT標記,防重搜
#include<iostream> #include<stdio.h> #include<cstring> using namespace std; struct tree{int x;int step;} queue[800050]; int visit[100050]; int n,k; int bfs() { int t,w,temp,minx=10000000,xx; t=w=1; queue[t].x=n; visit[n]=1; queue[t].step=0; while(t<=w) { xx=queue[t].x; if(xx>k) { temp=queue[t].step+xx-k;//如果比結果大,只能減,所以可以直接求出來! if(temp<minx) minx=temp; t++;//這裡的T一定要加,要不然就錯了 continue; } if(xx*2<=100000&&(!visit[2*xx])) { queue[++w].x=xx*2; visit[2*xx]=1;//用VISIT來標記,防止重搜 queue[w].step=queue[t].step+1; if( queue[w].x==k) { if(queue[w].step<minx) return queue[w].step; else return minx; } } if(xx+1<=100000&&(!visit[xx+1])) { queue[++w].x=xx+1; visit[xx+1]=1; queue[w].step=queue[t].step+1; if( queue[w].x==k) { if(queue[w].step<minx) return queue[w].step; else return minx; } } if(xx>=1&&(!visit[xx-1])) { queue[++w].x=xx-1; visit[xx-1]=1; queue[w].step=queue[t].step+1; if( queue[w].x==k) { if(queue[w].step<minx) return queue[w].step; else return minx; } } t++; } return -1; } int main () { while(scanf("%d%d",&n,&k)!=EOF) { memset(visit,0,sizeof(visit)); if(n>=k) printf("%d\n",n-k); else printf("%d\n",bfs()); } return 0; } #include<iostream> #include<stdio.h> #include<cstring> using namespace std; struct tree{int x;int step;} queue[800050]; int visit[100050]; int n,k; int bfs() { int t,w,temp,minx=10000000,xx; t=w=1; queue[t].x=n; visit[n]=1; queue[t].step=0; while(t<=w) { xx=queue[t].x; if(xx>k) { temp=queue[t].step+xx-k;//如果比結果大,只能減,所以可以直接求出來! if(temp<minx) minx=temp; t++;//這裡的T一定要加,要不然就錯了 continue; } if(xx*2<=100000&&(!visit[2*xx])) { queue[++w].x=xx*2; visit[2*xx]=1;//用VISIT來標記,防止重搜 queue[w].step=queue[t].step+1; if( queue[w].x==k) { if(queue[w].step<minx) return queue[w].step; else return minx; } } if(xx+1<=100000&&(!visit[xx+1])) { queue[++w].x=xx+1; visit[xx+1]=1; queue[w].step=queue[t].step+1; if( queue[w].x==k) { if(queue[w].step<minx) return queue[w].step; else return minx; } } if(xx>=1&&(!visit[xx-1])) { queue[++w].x=xx-1; visit[xx-1]=1; queue[w].step=queue[t].step+1; if( queue[w].x==k) { if(queue[w].step<minx) return queue[w].step; else return minx; } } t++; } return -1; } int main () { while(scanf("%d%d",&n,&k)!=EOF) { memset(visit,0,sizeof(visit)); if(n>=k) printf("%d\n",n-k); else printf("%d\n",bfs()); } return 0; }