Max Sum of Max-K-sub-sequence
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Submit StatusDescription
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
優先隊列,在1-n加一個n-1就可以把環轉化成一條線,用sum求合,那麼從i到j的和就可以用sum[j]-sum[i],這個技巧也可以優化求和!然後把sum[i]用優先隊列,j從0到n+m;這樣一個一個求和,就可以了!
#include <iostream> #include<stdio.h> using namespace std; int num[250000],sum[250000],prim[250000]; int main() { int n,m,t,i,front,rear; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); sum[0]=0; for(i=1;i<=n;i++) { scanf("%d",&num[i]); sum[i]=sum[i-1]+num[i];//用合來簡化運算 } for(;i<=2*n;i++) { sum[i]=sum[i-1]+num[i-n];//大於N的部分i-n對應的相應的NUM } front=0; rear=0; int maxx=-1e10,sx=0,ex=0; for(i=1;i<=n+m;i++) { while(front<rear&&sum[prim[rear-1]]>sum[i-1])//插入 { rear--; } prim[rear++]=i-1; while(front<rear&&i-prim[front]>m)//去掉過界的 { front++; } if(maxx<sum[i]-sum[prim[front]])//保存最大值,和相應的坐標 { sx=prim[front]+1; ex=i; maxx=sum[i]-sum[prim[front]]; } } if(sx>n)sx-=n;//注意大於n的其實是構造的模型,再重新 if(ex>n)ex-=n; printf("%d %d %d\n",maxx,sx,ex); } return 0; }