Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
class Solution { public: int numTrees(int n) { // Start typing your C/C++ solution below // DO NOT write int main() function if(n <= 2) return n; vector<int> f(n+1, 1); f[1] = 1; f[2] = 2; int tmp; for(int i = 3; i <= n; i++){ tmp = 0; for(int j = 0; j < i; j++){ tmp += f[j] * f[i-1-j]; } f[i] = tmp; } return f[n]; } };