這道題很簡單。先將N用2,3,5,7(即10以內的素數)分解因數(需要先特殊判斷N不為1),然後將可以合並的因數合並(如2*2合並成4,)這樣求得的結果位數會減少,大小肯定會小一些。具體實現見代碼。
我的解題代碼如下:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <string> #include <algorithm> using namespace std; int c[12]; int T; int N; int main() { cin >> T; while(T--) { cin >> N; if(N==1) { cout << 1 << endl; continue; } memset(c,0,sizeof(c)); while(N!=1) //分解N { if(N%2==0) { c[2]++; N/=2; } else if(N%3==0) { c[3]++; N/=3; } else if(N%5==0) { c[5]++; N/=5; } else if(N%7==0) { c[7]++; N/=7; } else break; } if(N!=1) { cout << -1 << endl; continue; } while(1) //合並N的因子 { if(c[2]>=3) { c[2]-=3; c[8]++; } //因子有三個2,合並為8 else if(c[2]>=2) { c[2]-=2; c[4]++; } //有兩個2,合並為4 else if(c[3]>=2) { c[3]-=2; c[9]++; } //有兩個3,合並為9 else if(c[2]>=1 && c[3]>=1) { c[2]--; c[3]--; c[6]++; } //有一個2和一個3,合並為6 else break; } for(int i=2; i<=9; i++) {//輸出結果 while(c[i]) { cout << i; c[i]--; } } cout << endl; } return 0; }
附上題目如下:
For a given non-negative integer number N , find the minimal natural Q such that the product of all digits of Q is equal N .
Input
The first line of input contains one positive integer number, which is the number of data sets. Each subsequent line contains one data set which consists of one non-negative integer number N (0N109) .
Output
For each data set, write one line containing the corresponding natural number Q or `-1' if Q does not exist.
Sample Input
3
1
10
123456789
Sample Output
1
25
-1