//用的自己的計算幾何模板,不過比較慢嘿嘿 //要注意只有一個點和兩個點 //Computational Geometry //by kevin_samuel(fenice) Soochow University //temple #include <iostream> #include <cmath> #include <algorithm> #include <cstdio> //#include <stack> using namespace std; //define const double EPS = 1e-8; const double PI = acos(-1.0); //point //==================================================================== class Point { public: double x; double y; Point(){} Point(double x,double y):x(x),y(y){} //operator //operator= Point& operator=(const Point& _P) { x = _P.x; y = _P.y; return *this; } //operator* double operator*(const Point& _P)const { return x*_P.y - y *_P.x; } //operator- Point operator-(const Point& _P)const { return Point(x - _P.x,y - _P.y); } //operator== bool operator==(const Point& _P)const { if(fabs(_P.x - x) < EPS && fabs(_P.y - y) < EPS) return true; else return false; } bool operator!=(const Point& _P)const { return ((*this) == _P) == false; } //dot product static double dotProduct(Point s1,Point e1,Point s2,Point e2) { double result = 0; double x1 = e1.x - s1.x; double y1 = e1.y - s1.y; double x2 = e2.x - s2.x; double y2 = e2.y - s2.y; result = x1*x2 + y1*y2; return result; } //cross product 1 (4 point-type params) static double crossProduct(Point s1,Point e1,Point s2,Point e2) { double result = 0; double x1 = e1.x - s1.x; double y1 = e1.y - s1.y; double x2 = e2.x - s2.x; double y2 = e2.y - s2.y; result = x1*y2 - x2*y1; return result; } //cross product 2 (3 point-type params) static double crossProduct(Point p1,Point p2,Point p0) { return crossProduct(p0,p1,p0,p2); } //Is on segment or line static bool onSegment(Point Pi,Point Pj,Point Q) { if(Q.x >= min(Pi.x,Pj.x) && Q.x <= max(Pi.x,Pj.x) && Q.y >= min(Pi.y,Pj.y) && Q.y <= max(Pi.y,Pj.y) && fabs(crossProduct(Q,Pj,Pi)) < EPS ) return true; else return false; } //Is on segment bool IsOnSegment(Point Pi,Point Pj) { if(this->x >= min(Pi.x,Pj.x) && this->x <= max(Pi.x,Pj.x) && this->y >= min(Pi.y,Pj.y) && this->y <= max(Pi.y,Pj.y) && fabs(Point::crossProduct(*this,Pj,Pi)) < EPS ) return true; else return false; } //Is inside triangle bool inTriangle(Point A,Point B,Point C) { double Sabc = fabs(Point::crossProduct(B,C,A)); double Spab = fabs(Point::crossProduct(A,B,(*this))); double Spac = fabs(Point::crossProduct(A,C,(*this))); double Spbc = fabs(Point::crossProduct(B,C,(*this))); if(Spbc + Spab + Spac == Sabc) return true; else return false; } //Is inside polygon //polys[] ,0-n bool insidePolygon(Point *polys,int n) { int counter = 0; double xinters; Point p1,p2; p1 = polys[0]; for(int i = 1; i < n; i++) { p2 = polys[i % n]; if(Point::onSegment(p1,p2,(*this)) == true) return true; if((*this).y > min(p1.y,p2.y) && (*this).y <= max(p1.y,p2.y)) { if((*this).x <= max(p1.x,p2.x) && p1.y != p2.y) { xinters = ((*this).y - p1.y)*(p2.x - p1.x)/(p2.y - p1.y) + p1.x; if(p1.x == p2.x || (*this).x <= xinters) counter++; } } p1 = p2; } if(counter % 2 == 0) return false; return true; } //distance^2 double dis2(const Point& _P)const { return (x - _P.x)*(x - _P.x) + (y - _P.y)*(y - _P.y); } //distance double dis(const Point& _P)const { return sqrt(dis2(_P)); } static double dis(const Point& p1,const Point& p2) { return sqrt((p2.x - p1.x)*(p2.x - p1.x) + (p2.y - p1.y)*(p2.y -p1.y)); } }; //================================================================================== //vector segment or line //================================================================================== class Vector { public: Point start; Point end; double _x; double _y; double a,b,c; //ax + by + c = 0 Vector(){} Vector(double __x,double __y):_x(__x),_y(__y){} Vector(Point a,Point b):start(a),end(b) { _x = end.x - start.x; _y = end.y - start.y; } //operator //judge the position of the point relative to the segment double operator*(const Point& _P)const { double res = Point::crossProduct(_P,this->end,this->start); if(fabs(res) < EPS) return 0; if(res > 0) return 1; else return -1; } //crossProduct double operator*(const Vector& _V)const { Point st = _V.start; Point en = _V.end; return Point::crossProduct(start,end,st,en); } //transfer to normal rex bool pton() { a = start.y - end.y; b = end.x - start.x; c = start.x * end.y - start.y * end.x; return true; } //judge whether _P is on the line bool IsLinehasPoint(const Point& _P)const { if(fabs((*this)*_P) < EPS) return true; else return false; } //juegde whether _P is on the segment bool IsSegmenthasPoint(const Point& _P)const { if(_P.x >= min(this->start.x,this->end.x) && _P.x <= max(this->start.x,this->end.x) && _P.y >= min(this->start.y,this->end.y) && _P.y <= max(this->start.y,this->end.y) && fabs((*this)*_P) < EPS ) return true; else return false; } //the distance from point to line double disToPoint(const Point& _P) { pton(); //transfer double td = (a*_P.x + b*_P.y + c)/sqrt(a*a + b*b); double xp = (b*b*_P.x - a*b*_P.y -a*c)/(a*a + b*b); double yp = (-a*b*_P.x + a*a*_P.y - b*c)/(a*a + b*b); double xb = max(start.x,end.x); double yb = max(start.y,end.y); double xs = start.x + end.x - xb; double ys = start.y + end.y - yb; if(xp > xb + EPS||xp < xs - EPS||yp > yb + EPS||yp < ys - EPS) td = min(_P.dis(start),_P.dis(end)); return fabs(td); } //out the mirror point by this line or segment Point mirrorPoint(const Point& _P)const { Point ret; double d = a * a + b * b; ret.x = (b*b*_P.x - a*a*_P.x - 2*a*b*_P.y - 2*a*c)/d; ret.y = (a*a*_P.y - b*b*_P.y - 2*a*b*_P.x - 2*b*c)/d; return ret; } //out the vertical line of two points static Vector verticalLine(const Point& _a,const Point& _b) { Vector ret; ret.start.x = (_a.x + _b.x)/2; ret.start.y = (_a.y + _b.y)/2; ret.a = _b.x - _a.x; ret.b = _b.y - _a.y; ret.c = (_a.y - _b.y)*ret.start.y + (_a.x - _b.x)*ret.start.x; if(fabs(ret.a) > EPS) { ret.end.y = 0.0; ret.end.x = -ret.c/ret.a; if(ret.end == ret.start) { ret.end.y = 1e10; ret.end.x = -(ret.c - ret.b * ret.end.y)/ret.a; } } else { ret.end.x = 0.0; ret.end.y = - ret.c/ret.b; if(ret.end == ret.start) { ret.end.x = 1e10; ret.end.y = - (ret.c - ret.a*ret.end.x)/ret.b; } } return ret; } //line with line //two lines coincide bool equal(const Vector& _P)const { return IsLinehasPoint(_P.start) && IsLinehasPoint(_P.end); } // two parallel lines bool parallel(const Vector& _P)const { return (fabs((*this)*_P)) < EPS; } //the intersection points of two lines Point Intersection(Vector _V) { //judge parallel and coincide Point ret = start; double t = ((start.x - _V.start.x)*(_V.start.y - _V.end.y) - (start.y - _V.start.y)*(_V.start.x - _V.end.x))/ ((start.x - end.x)*(_V.start.y - _V.end.y) - (start.y - end.y)*(_V.start.x - _V.end.x)); ret.x += (end.x - start.x)*t; ret.y += (end.y - start.y)*t; return ret; } //line and segment //is line cross with segment //param:segment bool crossSL(const Vector& _V)const { double rs = (*this)*_V.start; double re = (*this)*_V.end; return rs*re < EPS; } //segment and segment //judge wheather two segments intersect bool IsCrossSS(const Vector& _V)const { return ( max(start.x,end.x) >= min(_V.start.x,_V.end.x) && max(_V.start.x,_V.end.x) >= min(start.x,end.x) && max(start.y,end.y) >= min(_V.start.y,_V.end.y) && max(_V.start.y,_V.end.y) >= min(start.y,end.y) && ((Vector(_V.start,start)*_V)*(_V*Vector(_V.start,end)) >= EPS) && ((Vector(start,_V.start)*(*this))*((*this)*Vector(start,_V.start))>=EPS) ); } }; //================================================================================= //Graham-scan #define MAXN 110 Point Points[MAXN]; int N; int stack[MAXN]; int top; bool cmp(const Point& a,const Point& b) { if(a.y == b.y) return a.x < b.x; else return a.y < b.y; } bool multi(Point sp,Point ep,Point op) { return (sp.x - op.x)*(ep.y - op.y) >= (ep.x - op.x)*(sp.y - op.y); } void Graham_Scan() { int len; top = 1; sort(Points,Points+N,cmp); if(N == 0) return; stack[0] = 0; if(N == 1) return; stack[1] = 1; if(N == 2) return; stack[2] = 2; for(int i = 2; i < N; i++) { while(top && multi(Points[i],Points[stack[top]],Points[stack[top-1]])) top--; stack[++top] = i; } len = top; stack[++top] = N - 2; for(int i = N - 3; i >= 0; i--) { while(top != len && multi(Points[i],Points[stack[top]],Points[stack[top-1]])) top--; stack[++top] = i; } } //================================================================================== //test zone int main() { while(cin>>N) { if(N == 0) break; for(int i = 0; i < N; i++) { cin>>Points[i].x>>Points[i].y; } Graham_Scan(); double length = 0; for(int i = 0; i <= top - 2; i++) { length +=Point::dis(Points[stack[i]],Points[stack[i+1]]); } length +=Point::dis(Points[stack[top - 1]],Points[stack[0]]); if(N == 1) printf("0.00\n"); else if(N == 2) printf("%.2lf\n",Point::dis(Points[0],Points[1])); else printf("%.2lf\n",length); } return 0; } //用的自己的計算幾何模板,不過比較慢嘿嘿 //要注意只有一個點和兩個點 //Computational Geometry //by kevin_samuel(fenice) Soochow University //temple #include <iostream> #include <cmath> #include <algorithm> #include <cstdio> //#include <stack> using namespace std; //define const double EPS = 1e-8; const double PI = acos(-1.0); //point //==================================================================== class Point { public: double x; double y; Point(){} Point(double x,double y):x(x),y(y){} //operator //operator= Point& operator=(const Point& _P) { x = _P.x; y = _P.y; return *this; } //operator* double operator*(const Point& _P)const { return x*_P.y - y *_P.x; } //operator- Point operator-(const Point& _P)const { return Point(x - _P.x,y - _P.y); } //operator== bool operator==(const Point& _P)const { if(fabs(_P.x - x) < EPS && fabs(_P.y - y) < EPS) return true; else return false; } bool operator!=(const Point& _P)const { return ((*this) == _P) == false; } //dot product static double dotProduct(Point s1,Point e1,Point s2,Point e2) { double result = 0; double x1 = e1.x - s1.x; double y1 = e1.y - s1.y; double x2 = e2.x - s2.x; double y2 = e2.y - s2.y; result = x1*x2 + y1*y2; return result; } //cross product 1 (4 point-type params) static double crossProduct(Point s1,Point e1,Point s2,Point e2) { double result = 0; double x1 = e1.x - s1.x; double y1 = e1.y - s1.y; double x2 = e2.x - s2.x; double y2 = e2.y - s2.y; result = x1*y2 - x2*y1; return result; } //cross product 2 (3 point-type params) static double crossProduct(Point p1,Point p2,Point p0) { return crossProduct(p0,p1,p0,p2); } //Is on segment or line static bool onSegment(Point Pi,Point Pj,Point Q) { if(Q.x >= min(Pi.x,Pj.x) && Q.x <= max(Pi.x,Pj.x) && Q.y >= min(Pi.y,Pj.y) && Q.y <= max(Pi.y,Pj.y) && fabs(crossProduct(Q,Pj,Pi)) < EPS ) return true; else return false; } //Is on segment bool IsOnSegment(Point Pi,Point Pj) { if(this->x >= min(Pi.x,Pj.x) && this->x <= max(Pi.x,Pj.x) && this->y >= min(Pi.y,Pj.y) && this->y <= max(Pi.y,Pj.y) && fabs(Point::crossProduct(*this,Pj,Pi)) < EPS ) return true; else return false; } //Is inside triangle bool inTriangle(Point A,Point B,Point C) { double Sabc = fabs(Point::crossProduct(B,C,A)); double Spab = fabs(Point::crossProduct(A,B,(*this))); double Spac = fabs(Point::crossProduct(A,C,(*this))); double Spbc = fabs(Point::crossProduct(B,C,(*this))); if(Spbc + Spab + Spac == Sabc) return true; else return false; } //Is inside polygon //polys[] ,0-n bool insidePolygon(Point *polys,int n) { int counter = 0; double xinters; Point p1,p2; p1 = polys[0]; for(int i = 1; i < n; i++) { p2 = polys[i % n]; if(Point::onSegment(p1,p2,(*this)) == true) return true; if((*this).y > min(p1.y,p2.y) && (*this).y <= max(p1.y,p2.y)) { if((*this).x <= max(p1.x,p2.x) && p1.y != p2.y) { xinters = ((*this).y - p1.y)*(p2.x - p1.x)/(p2.y - p1.y) + p1.x; if(p1.x == p2.x || (*this).x <= xinters) counter++; } } p1 = p2; } if(counter % 2 == 0) return false; return true; } //distance^2 double dis2(const Point& _P)const { return (x - _P.x)*(x - _P.x) + (y - _P.y)*(y - _P.y); } //distance double dis(const Point& _P)const { return sqrt(dis2(_P)); } static double dis(const Point& p1,const Point& p2) { return sqrt((p2.x - p1.x)*(p2.x - p1.x) + (p2.y - p1.y)*(p2.y -p1.y)); } }; //================================================================================== //vector segment or line //================================================================================== class Vector { public: Point start; Point end; double _x; double _y; double a,b,c; //ax + by + c = 0 Vector(){} Vector(double __x,double __y):_x(__x),_y(__y){} Vector(Point a,Point b):start(a),end(b) { _x = end.x - start.x; _y = end.y - start.y; } //operator //judge the position of the point relative to the segment double operator*(const Point& _P)const { double res = Point::crossProduct(_P,this->end,this->start); if(fabs(res) < EPS) return 0; if(res > 0) return 1; else return -1; } //crossProduct double operator*(const Vector& _V)const { Point st = _V.start; Point en = _V.end; return Point::crossProduct(start,end,st,en); } //transfer to normal rex bool pton() { a = start.y - end.y; b = end.x - start.x; c = start.x * end.y - start.y * end.x; return true; } //judge whether _P is on the line bool IsLinehasPoint(const Point& _P)const { if(fabs((*this)*_P) < EPS) return true; else return false; } //juegde whether _P is on the segment bool IsSegmenthasPoint(const Point& _P)const { if(_P.x >= min(this->start.x,this->end.x) && _P.x <= max(this->start.x,this->end.x) && _P.y >= min(this->start.y,this->end.y) && _P.y <= max(this->start.y,this->end.y) && fabs((*this)*_P) < EPS ) return true; else return false; } //the distance from point to line double disToPoint(const Point& _P) { pton(); //transfer double td = (a*_P.x + b*_P.y + c)/sqrt(a*a + b*b); double xp = (b*b*_P.x - a*b*_P.y -a*c)/(a*a + b*b); double yp = (-a*b*_P.x + a*a*_P.y - b*c)/(a*a + b*b); double xb = max(start.x,end.x); double yb = max(start.y,end.y); double xs = start.x + end.x - xb; double ys = start.y + end.y - yb; if(xp > xb + EPS||xp < xs - EPS||yp > yb + EPS||yp < ys - EPS) td = min(_P.dis(start),_P.dis(end)); return fabs(td); } //out the mirror point by this line or segment Point mirrorPoint(const Point& _P)const { Point ret; double d = a * a + b * b; ret.x = (b*b*_P.x - a*a*_P.x - 2*a*b*_P.y - 2*a*c)/d; ret.y = (a*a*_P.y - b*b*_P.y - 2*a*b*_P.x - 2*b*c)/d; return ret; } //out the vertical line of two points static Vector verticalLine(const Point& _a,const Point& _b) { Vector ret; ret.start.x = (_a.x + _b.x)/2; ret.start.y = (_a.y + _b.y)/2; ret.a = _b.x - _a.x; ret.b = _b.y - _a.y; ret.c = (_a.y - _b.y)*ret.start.y + (_a.x - _b.x)*ret.start.x; if(fabs(ret.a) > EPS) { ret.end.y = 0.0; ret.end.x = -ret.c/ret.a; if(ret.end == ret.start) { ret.end.y = 1e10; ret.end.x = -(ret.c - ret.b * ret.end.y)/ret.a; } } else { ret.end.x = 0.0; ret.end.y = - ret.c/ret.b; if(ret.end == ret.start) { ret.end.x = 1e10; ret.end.y = - (ret.c - ret.a*ret.end.x)/ret.b; } } return ret; } //line with line //two lines coincide bool equal(const Vector& _P)const { return IsLinehasPoint(_P.start) && IsLinehasPoint(_P.end); } // two parallel lines bool parallel(const Vector& _P)const { return (fabs((*this)*_P)) < EPS; } //the intersection points of two lines Point Intersection(Vector _V) { //judge parallel and coincide Point ret = start; double t = ((start.x - _V.start.x)*(_V.start.y - _V.end.y) - (start.y - _V.start.y)*(_V.start.x - _V.end.x))/ ((start.x - end.x)*(_V.start.y - _V.end.y) - (start.y - end.y)*(_V.start.x - _V.end.x)); ret.x += (end.x - start.x)*t; ret.y += (end.y - start.y)*t; return ret; } //line and segment //is line cross with segment //param:segment bool crossSL(const Vector& _V)const { double rs = (*this)*_V.start; double re = (*this)*_V.end; return rs*re < EPS; } //segment and segment //judge wheather two segments intersect bool IsCrossSS(const Vector& _V)const { return ( max(start.x,end.x) >= min(_V.start.x,_V.end.x) && max(_V.start.x,_V.end.x) >= min(start.x,end.x) && max(start.y,end.y) >= min(_V.start.y,_V.end.y) && max(_V.start.y,_V.end.y) >= min(start.y,end.y) && ((Vector(_V.start,start)*_V)*(_V*Vector(_V.start,end)) >= EPS) && ((Vector(start,_V.start)*(*this))*((*this)*Vector(start,_V.start))>=EPS) ); } }; //================================================================================= //Graham-scan #define MAXN 110 Point Points[MAXN]; int N; int stack[MAXN]; int top; bool cmp(const Point& a,const Point& b) { if(a.y == b.y) return a.x < b.x; else return a.y < b.y; } bool multi(Point sp,Point ep,Point op) { return (sp.x - op.x)*(ep.y - op.y) >= (ep.x - op.x)*(sp.y - op.y); } void Graham_Scan() { int len; top = 1; sort(Points,Points+N,cmp); if(N == 0) return; stack[0] = 0; if(N == 1) return; stack[1] = 1; if(N == 2) return; stack[2] = 2; for(int i = 2; i < N; i++) { while(top && multi(Points[i],Points[stack[top]],Points[stack[top-1]])) top--; stack[++top] = i; } len = top; stack[++top] = N - 2; for(int i = N - 3; i >= 0; i--) { while(top != len && multi(Points[i],Points[stack[top]],Points[stack[top-1]])) top--; stack[++top] = i; } } //================================================================================== //test zone int main() { while(cin>>N) { if(N == 0) break; for(int i = 0; i < N; i++) { cin>>Points[i].x>>Points[i].y; } Graham_Scan(); double length = 0; for(int i = 0; i <= top - 2; i++) { length +=Point::dis(Points[stack[i]],Points[stack[i+1]]); } length +=Point::dis(Points[stack[top - 1]],Points[stack[0]]); if(N == 1) printf("0.00\n"); else if(N == 2) printf("%.2lf\n",Point::dis(Points[0],Points[1])); else printf("%.2lf\n",length); } return 0; }