/* poj 3130 How I Mathematician Wonder What You Are! - 求多邊形有沒有核 */ #include <stdio.h> #include<math.h> const double eps=1e-8; const int N=103; struct point { double x,y; }dian[N]; inline bool mo_ee(double x,double y) { double ret=x-y; if(ret<0) ret=-ret; if(ret<eps) return 1; return 0; } inline bool mo_gg(double x,double y) { return x > y + eps;} // x > y inline bool mo_ll(double x,double y) { return x < y - eps;} // x < y inline bool mo_ge(double x,double y) { return x > y - eps;} // x >= y inline bool mo_le(double x,double y) { return x < y + eps;} // x <= y inline double mo_xmult(point p2,point p0,point p1)//p1在p2左返回負,在右邊返回正 { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } point mo_intersection(point u1,point u2,point v1,point v2) { point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; } ///////////////////////// //切割法求半平面交 point mo_banjiao_jiao[N*2]; point mo_banjiao_jiao_temp[N*2]; void mo_banjiao_cut(point *ans,point qian,point hou,int &nofdian) { int i,k; for(i=k=0;i<nofdian;++i) { double a,b; a=mo_xmult(hou,ans[i],qian); b=mo_xmult(hou,ans[(i+1)%nofdian],qian); if(mo_ge(a,0))//順時針就是<=0 { mo_banjiao_jiao_temp[k++]=ans[i]; }if(mo_ll(a*b,0)) { mo_banjiao_jiao_temp[k++]=mo_intersection(qian,hou,ans[i],ans[(i+1)%nofdian]); } } for(i=0;i<k;++i) { ans[i]=mo_banjiao_jiao_temp[i]; } nofdian=k; } int mo_banjiao(point *dian,int n) { int i,nofdian; nofdian=n; for(i=0;i<n;++i) { mo_banjiao_jiao[i]=dian[i]; } for(i=0;i<n;++i)//i從0開始 { mo_banjiao_cut(mo_banjiao_jiao,dian[i],dian[(i+1)%n],nofdian); if(nofdian==0) { return nofdian; } } return nofdian; } ///////////////////////// int main() { int t,i,n; while(scanf("%d",&n),n) { for(i=0;i<n;++i) { scanf("%lf%lf",&dian[i].x,&dian[i].y); } int ret=mo_banjiao(dian,n); if(ret==0) { printf("0\n"); }else { printf("1\n"); } } return 0; }
/* 為什麼ret<3? */ #include<stdio.h> #include<math.h> #include <algorithm> using namespace std; const double eps=1e-8; struct point { double x,y; }dian[20000+10]; point jiao[203]; struct line { point s,e; double angle; }xian[20000+10]; int n,yong; bool mo_ee(double x,double y) { double ret=x-y; if(ret<0) ret=-ret; if(ret<eps) return 1; return 0; } bool mo_gg(double x,double y) { return x > y + eps;} // x > y bool mo_ll(double x,double y) { return x < y - eps;} // x < y bool mo_ge(double x,double y) { return x > y - eps;} // x >= y bool mo_le(double x,double y) { return x < y + eps;} // x <= y point mo_intersection(point u1,point u2,point v1,point v2) { point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; } double mo_xmult(point p2,point p0,point p1)//p1在p2左返回負,在右邊返回正 { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } void mo_HPI_addl(point a,point b) { xian[yong].s=a; xian[yong].e=b; xian[yong].angle=atan2(b.y-a.y,b.x-a.x); yong++; } //半平面交 bool mo_HPI_cmp(const line& a,const line& b) { if(mo_ee(a.angle,b.angle)) { return mo_gg( mo_xmult(b.e,a.s,b.s),0); }else { return mo_ll(a.angle,b.angle); } } int mo_HPI_dq[20000+10]; bool mo_HPI_isout(line cur,line top,line top_1) { point jiao=mo_intersection(top.s,top.e,top_1.s,top_1.e); return mo_ll( mo_xmult(cur.e,jiao,cur.s),0);//若順時針時應為mo_gg } int mo_HalfPlaneIntersect(line *xian,int n,point *jiao) { int i,j,ret=0; sort(xian,xian+n,mo_HPI_cmp); for (i = 0, j = 0; i < n; i++) { if (mo_gg(xian[i].angle,xian[j].angle)) { xian[++j] = xian[i]; } } n=j+1; mo_HPI_dq[0]=0; mo_HPI_dq[1]=1; int top=1,bot=0; for (i = 2; i < n; i++) { while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--; while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++; mo_HPI_dq[++top] = i; //當前半平面入棧 } while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--; while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[top]], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++; mo_HPI_dq[++top] = mo_HPI_dq[bot]; for (ret = 0, i = bot; i < top; i++, ret++) { jiao[ret]=mo_intersection(xian[mo_HPI_dq[i+1]].s,xian[mo_HPI_dq[i+1]].e,xian[mo_HPI_dq[i]].s,xian[mo_HPI_dq[i]].e); } return ret; } int main() { int i; while(scanf("%d",&n),n) { yong=0; for(i=0;i<n;++i) { scanf("%lf%lf",&dian[i].x,&dian[i].y); } for(i=0;i<n;++i) { mo_HPI_addl(dian[i],dian[(i+1)%n]); } int ret=mo_HalfPlaneIntersect(xian,n,jiao); if(ret<3) { printf("0\n"); }else { printf("1\n"); } } return 0; }