題目: 點擊打開鏈接
題目大意
給一個字符串,輸出它的最長回文串,如果有多個結果,輸出字典序最小的。
思路
我們都知道把一個字符串逆序後和原字符串進最長公共子序列,可以計算出它的最長回文串長度。
但是這題不僅要輸出回文串,而且還要求是字典序最小的,所以挺難搞的。
設str1是正序字符串,str2是逆序後的字符串
f[i][j].len 表示str1的前i位,str2的前j位,最長公共子串的長度
f[i][j].str 表示str1的前i位,str2的前j位,最長公共子串的最小字典序的字符串
狀態轉移和正常的LCS差不多,只不過增加了記錄字典序最小的字符串
但是最終的f[i][j].str卻並不一定是答案,因為計算出來的最長公共子序列不一定就是回文串
例如:
kfclbckibbibjccbej
jebccjbibbikcblcfk
bcibbibc是他們的LCS,但是卻不是回文串
但是它的前len/2個一定是回文串的前半部分
知道了前len/2,就可以直接構造出回文串的後半部分了
要注意長度的奇偶性問題
代碼
/**========================================== * This is a solution for ACM/ICPC problem * * @source:uva-11404 Palindromic Subsequence * @type: LCS最小字典序回文串 * @author: shuangde * @blog: blog.csdn.net/shuangde800 * @email: [email protected] *===========================================*/ #include<iostream> #include<cstdio> #include<algorithm> #include<vector> #include<queue> #include<cmath> #include<cstring> #include<cstdlib> using namespace std; typedef long long int64; const int INF = 0x3f3f3f3f; const int MAXN = 1010; char str1[MAXN], str2[MAXN]; int n, len; struct Node{ int len; string str;}f[MAXN][MAXN]; int main(){ Node a, b; while(gets(str1+1)){ // reverse len = strlen(str1+1); for(int i=1; i<=len; ++i) str2[i] = str1[len+1-i]; // init for(int i=0; i<=len; ++i) f[0][i].len = 0, f[0][i].str = ""; // LCS for(int i = 1; i <= len; ++i) { for(int j = 1; j <= len; ++j) { if (str1[i] == str2[j]) { f[i][j].len = f[i-1][j-1].len + 1; f[i][j].str = f[i-1][j-1].str + str1[i]; } else { if(f[i-1][j].len > f[i][j-1].len) { f[i][j].len = f[i-1][j].len; f[i][j].str = f[i-1][j].str; } else if (f[i][j-1].len > f[i-1][j].len) { f[i][j].len = f[i][j-1].len; f[i][j].str = f[i][j-1].str; } else { f[i][j].len = f[i-1][j].len; f[i][j].str = min(f[i-1][j].str, f[i][j-1].str); } } } } int maxx = f[len][len].len; string ans = f[len][len].str; // output if(maxx & 1) { for(int i = 0; i < maxx/2; ++i) cout << ans[i]; for(int i = maxx/2; i >= 0; --i) cout << ans[i]; putchar('\n'); } else { for(int i = 0; i < maxx/2; ++i) cout << ans[i]; for(int i = maxx/2-1; i >= 0; --i) cout << ans[i]; putchar('\n'); } } return 0;}