Description
A fractal is an object or quantity that displays self-similarity, in a somewhat technical sense, on all scales. The object need not exhibit exactly the same structure at all scales, but the same "type" of structures must appear on all scales.
A box fractal is defined as below :
A box fractal of degree 1 is simply
X
A box fractal of degree 2 is
X X
X
X X
If using B(n - 1) to represent the box fractal of degree n - 1, then a box fractal of degree n is defined recursively as following
B(n - 1) B(n - 1)
B(n - 1)
B(n - 1) B(n - 1)
Your task is to draw a box fractal of degree n.
Input
The input consists of several test cases. Each line of the input contains a positive integer n which is no greater than 7. The last line of input is a negative integer −1 indicating the end of input.
Output
For each test case, output the box fractal using the 'X' notation. Please notice that 'X' is an uppercase letter. Print a line with only a single dash after each test case.
Sample Input
1
2
3
4
-1Sample Output
X
-
X X
X
X X
-
X X X X
X X
X X X X
X X
X
X X
X X X X
X X
X X X X
-
X X X X X X X X
X X X X
X X X X X X X X
X X X X
X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
X X X X
X X
X X X X
X X
X
X X
X X X X
X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
X X X X
X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
一遞歸:
先看下較為常規的遞歸解決:
由於圖形是重復的,小的圖形只是把大圖形的左上角一部分輸出,,只計算最大的圖形,打表可加快速度。
#include <stdio.h> #include <string.h> int p[8] = {1,3,9,27,81,243,729}; char map[730][730]; //n當前的圖形大小,x,y圖形所在的坐標 void print(int n,int x,int y){ if(n == 0){ map[x][y] = 'X'; // return; } print(n-1, x, y); //左上 print(n-1, x+2*p[n-1], y); //右上 print(n-1, x+p[n-1], y+p[n-1]); //中間 print(n-1, x, y+2*p[n-1]); print(n-1, x+2*p[n-1], y+2*p[n-1]); } int n; int main(){ for(int i=0; i<p[6]; i++) memset(map[i], 32, p[6]); print(6, 0, 0); //打表 while(scanf("%d", &n) && n-- >= 0){ for(int i=0; i<p[n]; i++){ map[i][p[n]]=0; puts(map[i]); map[i][p[n]]=' '; } puts("-"); } return 0; }
二 數學方法
在discuss裡面看到這個短小精悍的程序。
#include"stdio.h" #include"math.h" main() { int i,j,n,ii,jj,k; while(scanf("%d",&n)&&n--!=-1) { for(i=0;i<pow(3,n);i++,printf("\n")) for(j=0;j<pow(3,n);j++) { for(ii=i,jj=j,k=0;k<n&&(ii%3+jj%3)%2==0;ii/=3,jj/=3,k++); printf("%c",32+56*(k==n)); } printf("-\n"); } }
關於這個圖形,還可以用來證明
尋找1/5 + 1/25 + 1/125 + .. = 1/4的圖形證明