Special equations
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 206 Accepted Submission(s): 108
Special Judge
Problem Description
Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known integers. We call f(x) 0 (mod m) congruence equation. If m is a composite, we can factor m into powers of primes and solve every such single equation after which we merge them using the Chinese Reminder Theorem. In this problem, you are asked to solve a much simpler version of such equations, with m to be prime's square.
Input
The first line is the number of equations T, T<=50.
Then comes T lines, each line starts with an integer deg (1<=deg<=4), meaning that f(x)'s degree is deg. Then follows deg integers, representing an to a0 (0 < abs(an) <= 100; abs(ai) <= 10000 when deg >= 3, otherwise abs(ai) <= 100000000, i<n). The last integer is prime pri (pri<=10000).
Remember, your task is to solve f(x) 0 (mod pri*pri)
Output
For each equation f(x) 0 (mod pri*pri), first output the case number, then output anyone of x if there are many x fitting the equation, else output "No solution!"
Sample Input
4
2 1 1 -5 7
1 5 -2995 9929
2 1 -96255532 8930 9811
4 14 5458 7754 4946 -2210 9601
Sample Output
Case #1: No solution!
Case #2: 599
Case #3: 96255626
Case #4: No solution!
Source
2013 ACM-ICPC長沙賽區全國邀請賽——題目重現
題解:f(x)%(p*p)=0那麼一定有f(x)%p=0,f(x)%p=0那麼一定有f(x+p)%p=0。
所以我們可以開始從0到p枚舉x,當f(x)%p=0,然後再從x到p*p枚舉,不過每次都是+p,找到了輸出即可,沒有的話No solution!,這裡只需要枚舉到pri*pri,這個證法和前面的一樣
#include<stdio.h> int a[6],pri,n; __int64 getf(int x,int i) { int j; __int64 sum=0; for(j=0;j<i;j++) { sum=(sum+a[j])*x; } return sum+a[j]; } void solve() { int i,j,k; int pri2=pri*pri; for(i=0;i<pri;i++) { if((getf(i,n))%pri==0) { for(j=i;j<pri2;j+=pri) { if(getf(j,n)%pri2==0) { printf("%d\n",j); return ; } } } } printf("No solution!\n"); } int main() { int i,j,k,t,no; __int64 temp; scanf("%d",&t); for(k=1;k<=t;k++) { scanf("%d",&n); for(i=0;i<=n;i++) { scanf("%d",&a[i]); } scanf("%d",&pri); printf("Case #%d: ",k); solve(); } return 0; } #include<stdio.h> int a[6],pri,n; __int64 getf(int x,int i) { int j; __int64 sum=0; for(j=0;j<i;j++) { sum=(sum+a[j])*x; } return sum+a[j]; } void solve() { int i,j,k; int pri2=pri*pri; for(i=0;i<pri;i++) { if((getf(i,n))%pri==0) { for(j=i;j<pri2;j+=pri) { if(getf(j,n)%pri2==0) { printf("%d\n",j); return ; } } } } printf("No solution!\n"); } int main() { int i,j,k,t,no; __int64 temp; scanf("%d",&t); for(k=1;k<=t;k++) { scanf("%d",&n); for(i=0;i<=n;i++) { scanf("%d",&a[i]); } scanf("%d",&pri); printf("Case #%d: ",k); solve(); } return 0; }