String
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 695 Accepted Submission(s): 254
Problem Description
Given 3 strings A, B, C, find the longest string D which satisfy the following rules:
a) D is the subsequence of A
b) D is the subsequence of B
c) C is the substring of D
Substring here means a consecutive subsequnce.
You need to output the length of D.
Input
The first line of the input contains an integer T(T = 20) which means the number of test cases.
For each test case, the first line only contains string A, the second line only contains string B, and the third only contains string C.
The length of each string will not exceed 1000, and string C should always be the subsequence of string A and string B.
All the letters in each string are in lowercase.
Output
For each test case, output Case #a: b. Here a means the number of case, and b means the length of D.
Sample Input
2
aaaaa
aaaa
aa
abcdef
acebdf
cf
Sample Output
Case #1: 4
Case #2: 3
Hint
For test one, D is "aaaa", and for test two, D is "acf".
Source
2013 Multi-University Training Contest 8
>Recommend
zhuyuanchen520
祭奠一下這個題
#include <iostream> #include <string> #include <cstring> #include <cstdio> #define N 1100 using namespace std; string s1,s2,s3,s4,s5; char temp[N]; int num1[N][N],num2[N][N]; struct num { int sta,end; } a[N],b[N]; int main() { //freopen("data.in","r",stdin); void get(int (*p)[N],string ch1,string ch2); int t,tem=1; scanf("%d",&t); while(t--) { cin>>s1>>s2>>s3; get(num1,s1,s2); int l1 = s1.size(); for(int i=0; i<=l1-1; i++) { temp[l1-1-i] = s1[i]; } temp[l1] = '\0'; s4 = temp; int l2 = s2.size(); for(int i=0; i<=l2-1; i++) { temp[l2-1-i] = s2[i]; } temp[l2] = '\0'; s5 = temp; get(num2,s4,s5); int l3 = s3.size(),Top1=0,Top2=0; for(int i=0; i<=l1-1; i++) { if(s1[i]==s3[0]) { int x = 0; int sta = i; int end = -1; for(int j=i; j<=l1-1&&x<=l3-1; j++) { if(s1[j]==s3[x]) { x++; } if(x==l3) { end = j; } } if(end==-1) { continue; } a[Top1].sta = sta; a[Top1++].end = end; } } for(int i=0; i<=l2-1; i++) { if(s2[i]==s3[0]) { int x = 0; int sta = i; int end = -1; for(int j=i; j<=l2-1&&x<=l3-1; j++) { if(s2[j]==s3[x]) { x++; } if(x==l3) { end = j; } } if(end==-1) { continue; } b[Top2].sta = sta; b[Top2++].end = end; } } int res = l3,Max=0; for(int i=0; i<=Top1-1; i++) { for(int j=0; j<=Top2-1; j++) { int x1 = a[i].sta; int y1 = a[i].end; int x2 = b[j].sta; int y2 = b[j].end; int k1 = 0; if(x1>0&&x2>0) { k1 = num1[x1-1][x2-1]; } int k2 = 0; if(y1<l1-1&&y2<l2-1) { k2 = num2[l1-2-y1][l2-2-y2]; } Max = max(Max,res+k2+k1); } } printf("Case #%d: %d\n",tem++,Max); } return 0; } void get(int (*p)[N],string ch1,string ch2) { int l1 = ch1.size(); int l2 = ch2.size(); memset(p,0,sizeof(p)); for(int i=0; i<=l1-1; i++) { for(int j=0; j<=l2-1; j++) { if(i==0&&j==0) { if(ch1[i]==ch2[j]) { p[i][j] = 1; } } else if(i==0&&j!=0) { if(ch1[i]==ch2[j]) { p[i][j] = 1; } else { p[i][j] = p[i][j-1]; } } else if(i!=0&&j==0) { if(ch1[i]==ch2[j]) { p[i][j] = 1; } else { p[i][j] = p[i-1][j]; } } else { if(ch1[i]==ch2[j]) { p[i][j] = p[i-1][j-1]+1; } else { p[i][j] = max(p[i][j-1],p[i-1][j]); } } } } }