題目的意思是:給出一個數N和一個基數D。首先這個數必須是素數。其次,將這個數(1)轉為D進制數(2)將這個D進制數反轉(3)將反轉後的數再轉為十進制數,這個十進制數依然是素數。 這樣我們就輸出“Yes”。
判斷素數:一個數N,如果從2到sqrt(N)都不存在因子,則認為這個數是素數。 注意:0和1不是素數。
將十進制數轉為n進制數:(待補充。。。)
A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
#include<iostream> #include<string.h> #include<math.h> using namespace std; bool is_Prime(int a) { int i; if(a==0 || a==1) return false; //注意是i<=sqrt(),之前弄成i<sqrt,一直出錯 for(i=2; i <= sqrt((double)a); i++){ if( a%i == 0) return false; } return true; } int change(int n,int d){ int a[100000]; memset(a,0,sizeof(a)); int total = 0; int j; int i; for(i=0; ; i++){ a[i] = n%d; n /= d; if(n==0) break; } for(j=0; j<=i; j++) { total = total*d + a[j]; } /*也可以這樣寫 do { total = total*d + n%d; n/=d; } while (n != 0); */ return total; } int main() { int N,D; while(cin>>N){ if( N<0 ) break; cin>>D; if( is_Prime(N) && is_Prime( change(N,D) )){ cout<<"Yes"<<endl; } else{ cout<<"No"<<endl; } } return 0; }