題目鏈接: poj-3107 題意 給一顆n個結點的樹,節點編號為1~n,問刪除一個節點之後,讓剩下的分支中節點數量最多的盡量少。 可能有多種方案,按編號順序輸出。 思路 簡單的樹形dp. 其實連dp都不能算吧...就是直接計數統計 先dfs計算每個節點子樹的節點個數tot[i]。 再次dfs更新答案: f[i] = max( n-tot[i], max{tot[v] | v是i的兒子} ); 兩個dfs可以合並在一個dfs裡完成, 復雜度O(n) 代碼
/**===================================================== * This is a solution for ACM/ICPC problem * * @source : poj-3107 Godfather * @description : 樹形dp * @author : shuangde * @blog : blog.csdn.net/shuangde800 * @email : [email protected] * Copyright (C) 2013/08/30 16:26 All rights reserved. *======================================================*/ #include <iostream> #include <cstdio> #include <algorithm> #include <vector> #include <cstring> using namespace std; typedef pair<int, int >PII; typedef long long int64; const int INF = 0x3f3f3f3f; const int MAXN = 50010; int tot[MAXN]; int f[MAXN], minx; namespace Adj { int size, head[MAXN]; struct Node{ int v, next; }E[MAXN*2]; inline void initAdj() { size = 0; memset(head, -1, sizeof(head)); } inline void addEdge(int u, int v) { E[size].v = v; E[size].next = head[u]; head[u] = size++; } } using namespace Adj; int n; int dfs(int u, int fa) { tot[u] = 1; // count for (int e = head[u]; e != -1; e = E[e].next) { int v = E[e].v; if (v == fa) continue; tot[u] += dfs(v, u); } // 計算答案 int& ans = f[u] = n - tot[u]; for (int e = head[u]; e != -1; e = E[e].next) { int v = E[e].v; if (v == fa) continue; ans = max(ans, tot[v]); } minx = min(minx, ans); return tot[u]; } int main(){ while (~scanf("%d", &n)) { initAdj(); for (int i = 0; i < n - 1; ++i) { int u, v; scanf("%d%d", &u, &v); addEdge(u, v); addEdge(v, u); } minx = INF; dfs(1, -1); bool first = true; for (int i = 1; i <= n; ++i) if (f[i] == minx) { if (first) first = false, printf("%d", i); else printf(" %d", i); } puts(""); } return 0;