指數型母函數 G(x) = ( 1 + x / 1! + (x^2)/(2!) + .....+ (x ^ n1 ) / (n1!) ) * (( 1 + x / 1! + (x^2)/(2!) + .....+ (x ^ n2 ) / (n2!)*.............*(( 1 + x / 1! + (x^2)/(2!) + .....+ (x ^ nk) / (nk!) ) 求x^m的系數轉換成temp / ( m ! ) ; 然後求解時,temp * (m! ) 就是x ^ m的系數
#include<map> #include<set> #include<list> #include<cmath> #include<ctime> #include<deque> #include<stack> #include<bitset> #include<cstdio> #include<vector> #include<cstdlib> #include<cstring> #include<iomanip> #include<numeric> #include<sstream> #include<utility> #include<iostream> #include<algorithm> #include<functional> using namespace std ; double fac[ ] = { 1 , 1 , 2 , 6 , 24 , 120 , 720 , 5040 , 40320 , 362880 , 3628800 , 39916800 } ; int main() { int n , m ; double a[ 11 ] , b[ 11 ] , num1[ 11 ], num2[ 11 ]; while( scanf( "%d%d" , &n , &m ) != EOF ) { for( int i = 0 ; i < n ; ++i ) { scanf( "%lf" , &a[ i ] ) ; } for( int i = 0 ; i <= m ; ++i ) num1[ i ] = num2[ i ] = 0.0 ; for( int i = 0 ; i <= a[ 0 ] ; ++i ) { num1[ i ] = 1.0 / fac[ i ] ; } for( int i = 1 ; i < n ; ++i ) { for( int j = 0 ; j <= m ; ++j ) { for( int k = 0 ; k <= a[ i ] && k + j <= m ; ++k ) { num2[ k + j ] += ( num1[ j ] / fac[ k ] ) ; } } for( int j = 0 ; j <= m ; ++j ) { num1[ j ] = num2[ j ] ; num2[ j ] = 0 ; } } printf( "%.lf\n" , num1[ m ] * fac[ m ] ) ; } return 0; }