Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
Subscribe to see which companies asked this question
//由1,2,3,...,n構建的二叉查找樹,以i為根節點,左子樹由[1,i-1]構成,其右子樹由[i+1,n]構成。 //定義f(i)為以[1,i]能產生的Unique Binary Search Tree的數目 //若數組為空,則只有一種BST,即空樹,f(0)=1; //若數組僅有一個元素1,則只有一種BST,單個節點,f(1)=1; //若數組有兩個元素1,2,則有兩種可能,f(2)=f(0)*f(1)+f(1)*f(0); //若數組有三個元素1,2,3,則有f(3)=f(0)*f(2)+f(1)*f(1)+f(2)*f(0) //由此可以得到遞推公式:f(i)=f(0)*f(i-1)+...+f(k-1)*f(i-k)+...+f(i-1)*f(0) //利用一維動態規劃來求解 class Solution { public: int numTrees(int n) { vectorf(n+1,0); //n+1個int型元素,每個都初始化為0 f[0] = 1; f[1] = 1; for (int i = 2; i <= n; ++i){ for (int k = 1; k <= i; ++k) f[i] = f[i] + f[k - 1] * f[i - k]; } return f[n]; } };