題目:
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
For example, given n = 12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
解答:
想一想,當 n = 13 時答案其實是 n = 9 時答案 + 1 的和;n = 12 時答案其實是 n = 8 時答案+ 1 的和,n = 8 時答案其實是 n = 4 時答案 + 1 的和。
這樣,就是明顯的動態規劃了。當 n = i * i 時,返回值為 1;其余情況下,n 依次減去一個小於自身的平方數後求返回值,取所有返回值中最小值再 + 1。
class Solution { public: int numSquares(int n) { int max = 1; while ((max + 1) * (max + 1) <= n) max++; int* dp = new int[n + 1]; for(int i = 1; i <= max; i++) dp[i * i] = 1; int tmp; for(int i = 1; i < max; i++) { for(int j = i * i + 1; j < (i+1)*(i+1); j++) { int min = n; for(int k = i; k >= 1; k--) { min = min > (1 + dp[j - k*k]) ? (1 + dp[j - k*k]) : min; } dp[j] = min; } } for(int j = max * max + 1; j <= n; j++) { int min = n; for(int k = max; k >= 1; k--) { min = min > (1 + dp[j - k*k]) ? (1 + dp[j - k*k]) : min; } dp[j] = min; } return dp[n]; } };
但其實,這道題擁有解析解:
根據 Lagrange's four-square theorem,自然數被最少的平方數組合的可能解只會是 1,2,3,4 其中之一。
解 = 1 比較易懂,開方即可;解 = 2, 3, 4 就要依靠 Legendre's three-square theorem 來判斷了。
class Solution { private: int is_square(int n) { int sqrt_n = (int)(sqrt(n)); return (sqrt_n*sqrt_n == n); } public: // Based on Lagrange's Four Square theorem, there // are only 4 possible results: 1, 2, 3, 4. int numSquares(int n) { // If n is a perfect square, return 1. if(is_square(n)) { return 1; } // The result is 4 if n can be written in the // form of 4^k*(8*m + 7). Please refer to // Legendre's three-square theorem. while (n%4 == 0) // n%4 == 0 n >>= 2; if (n%8 == 7) // n%8 == 7 return 4; // Check whether 2 is the result. int sqrt_n = (int)(sqrt(n)); for(int i = 1; i <= sqrt_n; i++) { if (is_square(n - i*i)) { return 2; } } return 3; } };