按值傳遞的意義是什麼?
當一個函數的參數按值傳遞時,這就會進行拷貝。當然,編譯器懂得如何去拷貝。
而對於我們自定義的類型,我們也許需要提供拷貝構造函數。
但是不得不說,拷貝的代價是昂貴的。
所以我們需要尋找一個避免不必要拷貝的方法,即C++11提供的移動語義。
上一篇博客中有一個句話用到了:
#include
void f(int& i) { std::cout << lvalue ref: << i <<
; }
void f(int&& i) { std::cout << rvalue ref: << i <<
; }
int main()
{
int i = 77;
f(i); // lvalue ref called
f(99); // rvalue ref called
f(std::move(i)); // 稍後介紹
return 0;
}
實際上,右值引用注意用於創建移動構造函數和移動賦值運算。
移動構造函數類似於拷貝構造函數,把類的實例對象作為參數,並創建一個新的實例對象。
但是 移動構造函數可以避免內存的重新分配,因為我們知道右值引用提供了一個暫時的對象,而不是進行copy,所以我們可以進行移動。
換言之,在設計到關於臨時對象時,右值引用和移動語義允許我們避免不必要的拷貝。我們不想拷貝將要消失的臨時對象,所以這個臨時對象的資源可以被我們用作於其他的對象。
右值就是典型的臨時變量,並且他們可以被修改。如果我們知道一個函數的參數是一個右值,我們可以把它當做一個臨時存儲。這就意味著我們要移動而不是拷貝右值參數的內容。這就會節省很多的空間。
說多無語,看代碼:
#include
#include
class A
{
public:
// Simple constructor that initializes the resource.
explicit A(size_t length)
: mLength(length), mData(new int[length])
{
std::cout << A(size_t). length =
<< mLength << . << std::endl;
}
// Destructor.
~A()
{
std::cout << ~A(). length = << mLength << .;
if (mData != NULL) {
std::cout << Deleting resource.;
delete[] mData; // Delete the resource.
}
std::cout << std::endl;
}
// Copy constructor.
A(const A& other)
: mLength(other.mLength), mData(new int[other.mLength])
{
std::cout << A(const A&). length =
<< other.mLength << . Copying resource. << std::endl;
std::copy(other.mData, other.mData + mLength, mData);
}
// Copy assignment operator.
A& operator=(const A& other)
{
std::cout << operator=(const A&). length =
<< other.mLength << . Copying resource. << std::endl;
if (this != &other) {
delete[] mData; // Free the existing resource.
mLength = other.mLength;
mData = new int[mLength];
std::copy(other.mData, other.mData + mLength, mData);
}
return *this;
}
// Move constructor.
A(A&& other) : mData(NULL), mLength(0)
{
std::cout << A(A&&). length =
<< other.mLength << . Moving resource.
;
// Copy the data pointer and its length from the
// source object.
mData = other.mData;
mLength = other.mLength;
// Release the data pointer from the source object so that
// the destructor does not free the memory multiple times.
other.mData = NULL;
other.mLength = 0;
}
// Move assignment operator.
A& operator=(A&& other)
{
std::cout << operator=(A&&). length =
<< other.mLength << . << std::endl;
if (this != &other) {
// Free the existing resource.
delete[] mData;
// Copy the data pointer and its length from the
// source object.
mData = other.mData;
mLength = other.mLength;
// Release the data pointer from the source object so that
// the destructor does not free the memory multiple times.
other.mData = NULL;
other.mLength = 0;
}
return *this;
}
// Retrieves the length of the data resource.
size_t Length() const
{
return mLength;
}
private:
size_t mLength; // The length of the resource.
int* mData; // The resource.
};
移動構造函數
語法:
A(A&& other) noexcept // C++11 - specifying non-exception throwing functions
{
mData = other.mData; // shallow copy or referential copy
other.mData = nullptr;
}
最主要的是沒有用到新的資源,是移動而不是拷貝。
假設一個地址指向了一個有一百萬個int元素的數組,使用move構造函數,我們沒有創造什麼,所以代價很低。
// Move constructor.
A(A&& other) : mData(NULL), mLength(0)
{
// Copy the data pointer and its length from the
// source object.
mData = other.mData;
mLength = other.mLength;
// Release the data pointer from the source object so that
// the destructor does not free the memory multiple times.
other.mData = NULL;
other.mLength = 0;
}
移動比拷貝更快!!!
移動賦值運算符
語法:
A& operator=(A&& other) noexcept
{
mData = other.mData;
other.mData = nullptr;
return *this;
}
工作流程這樣的:Google上這麼說的:
Release any resources that *this currently owns.
Pilfer other’s resource.
Set other to a default state.
Return *this.
// Move assignment operator.
A& operator=(A&& other)
{
std::cout << operator=(A&&). length =
<< other.mLength << . << std::endl;
if (this != &other) {
// Free the existing resource.
delete[] mData;
// Copy the data pointer and its length from the
// source object.
mData = other.mData;
mLength = other.mLength;
// Release the data pointer from the source object so that
// the destructor does not free the memory multiple times.
other.mData = NULL;
other.mLength = 0;
}
return *this;
}
讓我們看幾個move帶來的好處吧!
vector眾所周知,C++11後對vector也進行了一些優化。例如vector::push_back()被定義為了兩種版本的重載,一個是cosnt T&左值作為參數,一個是T&&右值作為參數。例如下面的代碼:
std::vector v;
v.push_back(A(25));
v.push_back(A(75));
上面兩個push_back()都會調用push_back(T&&)版本,因為他們的參數為右值。這樣提高了效率。
而 當參數為左值的時候,會調用push_back(const T&) 。
#include
int main() { std::vector v; A aObj(25); // lvalue v.push_back(aObj); // push_back(const T&) }
但事實我們可以使用 static_cast進行強制:
// calls push_back(T&&)
v.push_back(static_cast(aObj));
我們可以使用std::move完成上面的任務:
v.push_back(std::move(aObj)); //calls push_back(T&&)
似乎push_back(T&&)永遠是最佳選擇,但是一定要記住:
push_back(T&&) 使得參數為空。如果我們想要保留參數的值,我們這個時候需要使用拷貝,而不是移動。
最後寫一個例子,看看如何使用move來交換兩個對象:
#include
using namespace std;
class A
{
public:
// constructor
explicit A(size_t length)
: mLength(length), mData(new int[length]) {}
// move constructor
A(A&& other)
{
mData = other.mData;
mLength = other.mLength;
other.mData = nullptr;
other.mLength = 0;
}
// move assignment
A& operator=(A&& other) noexcept
{
mData = other.mData;
mLength = other.mLength;
other.mData = nullptr;
other.mLength = 0;
return *this;
}
size_t getLength() { return mLength; }
void swap(A& other)
{
A temp = move(other);
other = move(*this);
*this = move(temp);
}
int* get_mData() { return mData; }
private:
int *mData;
size_t mLength;
};
int main()
{
A a(11), b(22);
cout << a.getLength() << ' ' << b.getLength() << endl;
cout << a.get_mData() << ' ' << b.get_mData() << endl;
swap(a,b);
cout << a.getLength() << ' ' << b.getLength() << endl;
cout << a.get_mData() << ' ' << b.get_mData() << endl;
return 0;
}