題目大意:給出一個張有向圖,和N個點的價值(買了這個點後,以這個點出發的所能遍及的點都會被染色)
問至少要花費多少錢去買點,才能使得這張圖的所有點都被染色
如果不能所有的點都染色,輸出不能染色點的最小值
解題思路:先求出所有的強連通分量,接著求出每個強連通分量內所有點的最少價值,因為同一個強連通分量內的點只需要購買一個就可以全部染色了
接著縮點,用橋連接起來,形成一張新的圖(以下所說的點都是強連通分量的縮點)
找出所有入度為0的點,因為入度為0的點是無法通過別的點進行染色的,所以只能買入度為0的點
#include
#include
#define N 3010
#define M 8010
#define INF 0x3f3f3f3f
#define min(a,b) ((a) < (b) ? (a) : (b))
struct Edge{
int from, to, next;
}E[M];
int n, tot, p, m, dfs_clock, scc_cnt, top;
int head[N], cost[N], pre[N], sccno[N], stack[N], lowlink[N], in[N], value[N];
void AddEdge(int u, int v) {
E[tot].to = v;
E[tot].from = u;
E[tot].next = head[u];
head[u] = tot++;
}
void init() {
memset(cost, 0x3f, sizeof(cost));
scanf(%d, &p);
int No, money;
for (int i = 0; i < p; i++) {
scanf(%d%d, &No, &money);
cost[No] = money;
}
scanf(%d, &m);
memset(head, -1, sizeof(head));
tot = 0;
int u, v;
for (int i = 0; i < m; i++) {
scanf(%d%d, &u, &v);
AddEdge(u, v);
}
}
void dfs(int u) {
pre[u] = lowlink[u] = ++dfs_clock;
stack[++top] = u;
int v;
for (int i = head[u]; i != -1; i = E[i].next) {
v = E[i].to;
if (!pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if (!sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if (lowlink[u] == pre[u]) {
scc_cnt++;
while (1) {
v = stack[top--];
sccno[v] = scc_cnt;
if (v == u)
break;
}
}
}
void solve() {
memset(pre, 0, sizeof(pre));
memset(sccno, 0, sizeof(sccno));
dfs_clock = scc_cnt = top = 0;
for (int i = 1; i <= n; i++)
if (!pre[i])
dfs(i);
for (int i = 1; i <= scc_cnt; i++) {
value[i] = INF;
in[i] = 1;
}
for (int i = 1; i <= n; i++) {
value[sccno[i]] = min(value[sccno[i]], cost[i]);
}
int u, v, minid;
for (int i = 0; i < tot; i++) {
u = sccno[E[i].from];
v = sccno[E[i].to];
if (u != v) {
in[v] = 0;
}
}
bool flag = false;
for (int i = 1; i <= n; i++) {
u = sccno[i];
if (in[u] && value[u] == INF) {
minid = i;
flag = true;
break;
}
}
if (flag) {
printf(NO
%d
, minid);
return ;
}
int ans = 0;
for (int i = 1; i <= scc_cnt; i++) {
if (in[i])
ans += value[i];
}
printf(YES
%d
, ans);
}
int main() {
while (scanf(%d, &n) != EOF) {
init();
solve();
}
return 0;
}