A Knight's Journey Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 34660 Accepted: 11827
Description
BackgroundInput
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .Output
The output for every scenario begins with a line containing Scenario #i:, where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
Source
TUD Programming Contest 2005, Darmstadt, Germany
題目鏈接:http://poj.org/problem?id=2488
題目大意:一個有n*m個格子的棋盤,模擬馬走“日”字,求一個棋盤的所有格子能否被走完,如果能,求走的路徑,即走格子的先後順序,如果有多種情況,按字典序最小的情況。用橫縱坐標表示格子位置,橫坐標是字母,縱坐標是數字。
解題思路:DFS由第一個格子開始搜,因為每步只能走“日”字,所以每步有八個方向,因為按字典序最小的走,枚舉方向時也按字典序。找到解的返回過程中標記路徑。
代碼如下:
#include#include int dx[8]={-2,-2,-1,-1,1,1,2,2};//按字典序枚舉8個方向 int dy[8]={-1,1,-2,2,-2,2,-1,1}; int xx[26]={'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'}; char ansx[28]; //記錄橫坐標路徑 int ansy[28]; //記錄縱坐標路徑 int sum,m,n,j; bool p; int a[28][28],vis[28][28]; void dfs(int x,int y,int cnt) { if(cnt==sum) //已走完所有格子 { ansx[j]=xx[x]; ansy[j++]=y+1; p=true; return; } for(int i=0;i<8;i++) { if(x+dx[i]<0||x+dx[i]>=n||y+dy[i]<0||y+dy[i]>=m) continue; if(vis[x+dx[i]][y+dy[i]]) continue; vis[x+dx[i]][y+dy[i]]=1; dfs(x+dx[i],y+dy[i],cnt+1); if(p) //若成功走完格子,往前標記每步路徑 { ansx[j]=xx[x]; ansy[j++]=y+1; return; } vis[x+dx[i]][y+dy[i]]=0; } } int main() { int t; scanf(%d,&t); for(int cnt=1;cnt<=t;cnt++) { p=false,j=0; memset(vis,0,sizeof(vis)); vis[0][0]=1; scanf(%d%d,&m,&n); sum=n*m; dfs(0,0,1); printf(Scenario #%d: , cnt); if(!p) printf(impossible ); else //輸出路徑 { for(int i=j-1;i>=0;i--) printf(%c%d,ansx[i],ansy[i]); printf( ); } if(cnt