Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, …, p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23
31
79
Sample Output
10
8
24
Source
求模素數p的原根個數
關於原根請看這裡:
原根
/*************************************************************************
> File Name: POJ1284.cpp
> Author: ALex
> Mail: www.2cto.com
> Created Time: 2015年06月04日 星期四 16時04分32秒
************************************************************************/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include