程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> 關於C++ >> LightOJ1027

LightOJ1027

編輯:關於C++

You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can’t remember anything. So, every time you come to the beginning position, you have no past experience.

Now you want to find the expected time to get out of the maze.
Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it’s negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.
Output

For each case, print the case number and the expected time to get out of the maze. If it’s impossible to get out of the maze, print ‘inf’. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.
Sample Input

Output for Sample Input

3

1

1

2

-10 -3

3

3 -6 -9

Case 1: 1/1

Case 2: inf

Case 3: 18/1

Problem Setter: Jane Alam Jan

首先設走出去的期望為E, 走一次就出去的概率為p, 走一次出去的平均時間為T1,走一次回到原點的概率為q,平均時間為T2
則有公式:
E=p?T1+q?(T2+E)
如果p不為0 就有解
(1?q)?E=p?T1+q?T2
p?E=p?T1+(1?p)?T2
設可以出去的門的時間和為sumT1, 回到原點的門的時間和為sumT2, 可以出去的門有m扇
所以上式變為:
mn?E= mn ? sumT1m + n?mn ? sumT2n?m

所以: mn?E= sumT1+sumT2n
所以: E= sumT1+sumT2m

/*************************************************************************
    > File Name: A.cpp
    > Author: ALex
    > Mail: [email protected] 
    > Created Time: 2015年05月17日 星期日 15時23分53秒
 ************************************************************************/

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include
#include 
#include 
#include 

using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair  PLL;

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

int main() {
    int t;
    int icase = 1;
    scanf("%d", &t);
    while (t--) {
        int n;
        scanf("%d", &n);
        int all = 0;
        int cnt = 0;
        int u;
        for (int i = 1; i <= n; ++i) {
            scanf("%d", &u);
            all += abs(u);
            if (u > 0) {
                ++cnt;
            }
        }
        if (!cnt) {
            printf("Case %d: inf\n", icase++);
        }
        else {
            u = gcd(all, cnt);
            printf("Case %d: %d/%d\n", icase++, all/ u, cnt / u);
        }
    }
    return 0;
}
  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved