Happy 2004
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1102 Accepted Submission(s): 791
Problem Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
Input The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000).
A test case of X = 0 indicates the end of input, and should not be processed.
Output For each test case, in a separate line, please output the result of S modulo 29.
Sample Input
1
10000
0
Sample Output
6
10
簡單的約數求和。2014^x,由素數基本定理,將2014分解,2014=2^2 * 3 * 167,則2014^x=2^(2*x) * 3^x * 167^x,由約數和公式(後附)得2014^x的約數和為:[2^(2*x+1)-1]/(2-1) * [3^(x+1)-1]/(3-1) * [167^(x+1)-1]/(167-1) = r/332,其中r=[2^(2*x+1)-1] * [3^(x+1)-1] * [167^(x+1)-1],答案就是(r/332)%29,在取模運算裡,除以一個數等於乘以這個數的逆元。而332關於模29的逆元是9,故答案就是(r*9)% 29.
在這裡還學到的知識:費馬小定理,對任意的素數p,任意整數a,有a^(p-1) mod p =1。 在本題裡29是素數,那麼對於a=2014就符合費馬小定理,由費馬小定理,a^28 mod 29 =1,則a^x mod 29 = a^(x mod 28) mod 29. 所以在代碼中處理時,先把x對28取余。
補:約數和公式,有素數基本定理,n=p1^a1 * p2^a2 ....... * pk^ak,約數和為:(p1^(a1+1)-1)/(p1-1) * (p2^(a2+1)-1)/(p2-1) .... * (pk^(ak+1)-1)/(pk-1)
#include #include #include #include using namespace std; typedef __int64 ll; const int MOD=29; quick_mod(int a,int b){ //a^b%MOD int res=1; a%=MOD; while(b){ if(b&1) res=(res*a)%MOD; b/=2; a=(a*a)%MOD; } return res; } int main() { int i,j,n,res,k; while(scanf(%d,&n),n){ int x1,x2,x3; x1=(2*n+1)%(MOD-1); x1=quick_mod(2,x1)-1; x2=x3=(n+1)%(MOD-1); x2=quick_mod(3,x2)-1; x3=quick_mod(167,x3)-1; res=(x1*x2*x3*9)%MOD; printf(%d ,res); } return 0; }
補充逆元的求法:a*b mod m =1,則稱a為b的逆元,a,b互為逆元,a模m存在逆元的充要條件是:a和m互素。(這有線性同余方程的知識可證)。將a*b mod m =1變形:a*b - m*y =1,要求a的逆元的話就是求b,即線性同余方程的解,對a和m構造同余方程,然後求解即可。(用到了擴展歐幾裡得算法Exgcd)
void Exgcd(int a,int b,int &d,int &x,int &y){
if(b==0){
x=1;y=0;d=a;return ;
}
Exgcd(b,a%b,d,y,x);
y-=(a/b)*x;
}
//求模n意義下a的逆元,如果不存在則返回-1
int inv(int a,int n){
int d,x,y;
Exgcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
}
所以本題中332在模29意義下的逆元可以通過 inv(332,29)求得。