程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> 關於C++ >> HDU 4758 Walk Through Squares(自動機+DP)

HDU 4758 Walk Through Squares(自動機+DP)

編輯:關於C++
On the beaming day of 60th anniversary of NJUST, as a military college which was Second Artillery Academy of Harbin Military Engineering Institute before, queue phalanx is a special landscape.

Here is a M*N rectangle, and this one can be divided into M*N squares which are of the same size. As shown in the figure below:
01--02--03--04
|| || || ||
05--06--07--08
|| || || ||
09--10--11--12
Consequently, we have (M+1)*(N+1) nodes, which are all connected to their adjacent nodes. And actual queue phalanx will go along the edges.
The ID of the first node,the one in top-left corner,is 1. And the ID increases line by line first ,and then by column in turn ,as shown in the figure above.
For every node,there are two viable paths:
(1)go downward, indicated by 'D';
(2)go right, indicated by 'R';
The current mission is that, each queue phalanx has to walk from the left-top node No.1 to the right-bottom node whose id is (M+1)*(N+1).
In order to make a more aesthetic marching, each queue phalanx has to conduct two necessary actions. Let's define the action:
An action is started from a node to go for a specified travel mode.
So, two actions must show up in the way from 1 to (M+1)*(N+1).

For example, as to a 3*2 rectangle, figure below:
01--02--03--04
|| || || ||
05--06--07--08
|| || || ||
09--10--11--12
Assume that the two actions are (1)RRD (2)DDR

As a result , there is only one way : RRDDR. Briefly, you can not find another sequence containing these two strings at the same time.
If given the N, M and two actions, can you calculate the total ways of walking from node No.1 to the right-bottom node ?
Input The first line contains a number T,(T is about 100, including 90 small test cases and 10 large ones) denoting the number of the test cases.
For each test cases,the first line contains two positive integers M and N(For large test cases,1<=M,N<=100, and for small ones 1<=M,N<=40). M denotes the row number and N denotes the column number.
The next two lines each contains a string which contains only 'R' and 'D'. The length of string will not exceed 100. We ensure there are no empty strings and the two strings are different.

Output For each test cases,print the answer MOD 1000000007 in one line.

Sample Input
2
3 2
RRD
DDR
3 2
R
D

Sample Output
1
10
狀態比較好想:設dp[i][j][k][l]:為在第行,第j列,自動機上走到k節點,包含串的情況。 轉移下即可。用LL MLE啦。要換成int。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pairpil;
const int INF = 0x3f3f3f3f;
const int MOD=1e9+7;
int dp[110][110][210][4];
int n,m;
struct AC{
    int next[220][2];
    int fail[220],ed[220];
    int root,L;
    int newnode()
    {
        for(int i=0;i<2;i++)
           next[L][i]=-1;
        ed[L++]=0;
        return L-1;
    }
    void init()
    {
        L=0;
        root=newnode();
    }
    int what(char c)
    {
        return c!='D';
    }
    void Insert(char buf[],int id)
    {
        int len=strlen(buf);
        int now=root;
        for(int i=0;iq;
        fail[root]=root;
        for(int i=0;i<2;i++)
        {
            if(next[root][i]==-1)
                next[root][i]=root;
            else
            {
                fail[next[root][i]]=root;
                q.push(next[root][i]);
            }
        }
        while(!q.empty())
        {
            int now=q.front();
            q.pop();ed[now]|=ed[fail[now]];
            for(int i=0;i<2;i++)
            {
                if(next[now][i]==-1)
                    next[now][i]=next[fail[now]][i];
                else
                {
                    fail[next[now][i]]=next[fail[now]][i];
                    q.push(next[now][i]);
                }
            }
        }
    }
    void solve()//0:D   1:R
    {
        CLEAR(dp,0);
        dp[0][0][0][0]=1;
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=m;j++)
            {
                for(int k=0;k







  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved