Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4617 Accepted Submission(s): 1513
Problem Description Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
2 2
2 1 3
1 2 2
Sample Output
Case 1: Yes
Case 2: Yes
最大流。這個題的建圖算是經典,因為限定每個時刻每台機器只能處理一個任務,所以可以把時間點分配給各個合法的機器...具體是先設定一個超級源點S,連向各個任務,容量為該任務所需時間,各個任務連向在范圍內的時間點,容量為1(保證每個時刻xxx這個條件),所有時間點連向超級匯點T,容量為機器台數,最後求最大流,等於所有機器所需時間和的就是yes 代碼:
#include
#include
#include
#define SIZE 1100
#define INF 1000000000
using namespace std ;
struct Edge{
int to , w , next ;
}edge[SIZE*SIZE];
int n , m , start , ends , index = 0;
int head[SIZE] , level[SIZE] , cur[SIZE];
bool visited[SIZE] ;
bool bfs()
{
queue que ;
que.push(start) ;
memset(level,-1,sizeof(level)) ;
level[start] = 0 ;
while(!que.empty())
{
int pos = que.front() ;
que.pop() ;
for(int next = head[pos] ; next != -1 ; next = edge[next].next)
{
if(level[edge[next].to]<0 && edge[next].w>0)
{
level[edge[next].to] = level[pos]+1 ;
que.push(edge[next].to) ;
}
}
}
return level[ends] != -1 ;
}
int min(int a , int b)
{
return a>b?b:a ;
}
int dfs(int pos , int flow)
{
int deta = 0 , tmp = 0;
if(pos == ends)
return flow ;
for(int next = head[pos] ; next != -1 ; next = edge[next].next)
{
if(edge[next].w > 0 &&
level[pos] == level[edge[next].to]-1)
{
tmp = dfs(edge[next].to,min(flow-deta,edge[next].w)) ;
if(tmp>0)
{
edge[next].w -= tmp ;
edge[next^1].w += tmp ;
deta += tmp ;
if(deta == flow)
break ;
}
else
level[edge[next].to] = -1 ; //不加這個,,超時。。。
}
}
return deta ;
}
int dinic()
{
int ans = 0 , flow = 0 ;
while(bfs())
{
int deta = 0 ;
ans += dfs(0,INF) ;
}
return ans ;
}
void add(int s , int d , int w)
{
edge[index].next = head[s] ;
edge[index].to = d ;
edge[index].w = w ;
head[s] = index ++ ;
edge[index].next = head[d] ;
edge[index].to = s ;
edge[index].w = 0 ;
head[d] = index ++ ;
}
int main()
{
int t , c = 1 ;
scanf("%d",&t) ;
while(t--)
{
scanf("%d%d",&n,&m) ;
memset(head,-1,sizeof(head)) ;
index = 0 ;
int sum = 0 , max = -1;
start = 0;
for(int i = 1 ; i <= n ; ++i)
{
int x , y , z ;
scanf("%d%d%d",&x,&y,&z) ;
sum += x ;
max = max>z?max:z ;
add(start,i,x) ;
for(int j = y ; j <= z ; ++j)
{
add(i,j+n,1) ;
}
}
ends = n+max+1 ;
for(int i = 1 ; i <= max ; ++i)
add(i+n,ends,m) ;
int ans = dinic() ;
printf("Case %d: ",c++) ;
if(ans != sum)
puts("No\n") ;
else
puts("Yes\n");
}
return 0 ;
}
與君共勉