程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> 關於C++ >> POJ 2478

POJ 2478

編輯:關於C++

 

Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Appoint description:

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10 6). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

 

題意:給定一個數n,求小於或等於n的數中兩兩互質組成的真分數的個數。

思路:這個博客有關於這道題的推理---->點擊打開鏈接

 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
LL phi[1000010];
LL res[1000010];
void Euler()
{
    int i,j;
    memset(phi,0,sizeof(phi));
    phi[1]=1;
    for(i=2;i<=1000010;i++)
    {
        if(!phi[i])
        {
            for(j=i;j<=1000010;j+=i)
            {
                if(!phi[j]) 
                    phi[j]=j;
                phi[j]=phi[j]/i*(i-1);
            }
        }
    }
}
int main()
{
    int n;
    Euler();
    memset(res,0,sizeof(res));
    res[1]=res[2]=1;
    for(int i=3;i<1000010;i++)
        res[i]=res[i-1]+phi[i];
    while(~scanf("%d",&n)){
        if(!n) break;
        printf("%lld\n",res[n]);
    }
    return 0;
}


 

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved