題目鏈接:點擊打開鏈接
題意:
第一行輸入n個點 m條可修建的無向邊 k個人
下面給出修建的邊和修建該邊的花費。
開始時k個人在1-k的每個點上(一個點各一人)
目標:從m條給定邊中修建部分邊使得花費和最小
讓k個人移動到 [n-k+1, n] 後面的k個點上(每個點放一個人)。
思路:
首先就是一道斯坦納樹,還是先求一個dp數組(求解方法:點擊打開鏈接)
dp[i][j] 表示以i為根 ,j為8個點中是否在 i 的子樹裡 時的最小花費。
現在的問題就是如何求答案。
因為一個人到他的目標點這條路徑可能和別人的不連通,也就是多個最小生成樹,
我們枚舉2*k個點哪些點是在一個連通分量裡的,
則對於狀態x中,表示人的二進制是低k位,表示目標點的是高k位,x中1表示這些點是在一個連通分量裡的,
對於這個x的最小花費就是min( dp[ anypoint regard root ][x])
而x必須保證低k位中1的個數 和高k位中1的個數相同(即人數和目標點個數相同)
然後記憶化搜索即可。
#include#include #include #include #include
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.PriorityQueue; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.util.Queue; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; public class Main { int n, m, k, ans; int[][] dis = new int[N][N], dp = new int[N][1<<10]; int[] e = new int[10]; int[] vis = new int[N], mem = new int[1<<10]; int check(int x){ int a = 0, b = 0; for (int i = 0; i < k; i++) if ((x&(1 << i))>0)a++; for (int i = 0; i < k; i++) if ((x&(1 << (i + k)))>0)b++; if (a != b)return -1; int ans = inf; for (int i = 0; i < n; i++) ans = min(ans, dp[i][x]); return ans; } int dfs(int x){ if (mem[x] != -1)return mem[x]; int tmp = check(x); if (tmp == -1)return mem[x] = inf; int ans = tmp; for (int i = (x-1)&x; i > 0; i = (i - 1)&x){ ans = min(ans, dfs(i) + dfs(x - i)); } return mem[x] = ans; } void floyd(){ for(int z = 0; z < n; z++) for(int j = 0; j < n; j++) for(int i = 0; i < n; i++) dis[i][j] = min(dis[i][j], dis[j][z] + dis[z][i]); } void input() throws Exception{ for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)dis[i][j] = (i==j)?0:inf; while(m-->0){ int u = Int() - 1, v = Int() - 1, d = Int(); dis[u][v] = dis[v][u] = min(dis[u][v], d); } } void work() throws Exception{ int T = Int(); while(T-->0){ n = Int(); m = Int(); k = Int(); input(); floyd(); for (int i = 0; i < k; i++)e[i] = i; for (int i = 0; i < k; i++)e[i + k] = n - k + i; for (int i = 0; i < n; i++)for (int j = 0; j < (1 << (2 * k)); j++)dp[i][j] = inf; for (int i = 0; i < n; i++){ for (int j = 0; j < 2 * k; j++) dp[i][1 << j] = dis[i][e[j]]; } for (int i = 1; i < (1 << (2 * k)); i++){ if (0 == (i&(i - 1)))continue; for (int j = 0; j < n; j++){ for (int sub = i; sub > 0; sub = (sub - 1)&i) dp[j][i] = min(dp[j][i], dp[j][sub] + dp[j][i-sub]); } for (int j = 0; j < n; j++)vis[j] = 0; for (int j = 0; j < n; j++){ int a = inf, pos = 0; for (int z = 0; z < n; z++) if (vis[z] == 0 && dp[z][i] <= a) a = dp[pos = z][i]; vis[pos] = 1; for (int z = 0; z < n; z++) dp[pos][i] = min(dp[pos][i], dp[z][i] + dis[z][pos]); } } for(int i = 1; i < (1<<(2*k)); i++)mem[i] = -1; mem[0] = 0; ans = dfs((1<<(2*k))-1); if(ans == inf)out.println("No solution"); else out.println(ans); } } public static void main(String[] args) throws Exception{ Main wo = new Main(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); // out = new PrintWriter(new File("output.txt")); wo.work(); out.close(); } static int N = 55; static int M = 2005; DecimalFormat df=new DecimalFormat("0.0000"); static int inf = (int)1e8; static long inf64 = (long) 1e18*2; static double eps = 1e-8; static double Pi = Math.PI; static int mod = 1000000009 ; private String Next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int Int() throws Exception{ return Integer.parseInt(Next()); } private long Long() throws Exception{ return Long.parseLong(Next()); } private double Double() throws Exception{ return Double.parseDouble(Next()); } StringTokenizer str; static Scanner cin = new Scanner(System.in); static BufferedReader in; static PrintWriter out; /* class Edge{ int from, to, dis, nex; Edge(){} Edge(int from, int to, int dis, int nex){ this.from = from; this.to = to; this.dis = dis; this.nex = nex; } } Edge[] edge = new Edge[M<<1]; int[] head = new int[N]; int edgenum; void init_edge(){for(int i = 0; i < N; i++)head[i] = -1; edgenum = 0;} void add(int u, int v, int dis){ edge[edgenum] = new Edge(u, v, dis, head[u]); head[u] = edgenum++; }/**/ int upper_bound(int[] A, int l, int r, int val) {// upper_bound(A+l,A+r,val)-A; int pos = r; r--; while (l <= r) { int mid = (l + r) >> 1; if (A[mid] <= val) { l = mid + 1; } else { pos = mid; r = mid - 1; } } return pos; } int Pow(int x, int y) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } double Pow(double x, int y) { double ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } int Pow_Mod(int x, int y, int mod) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } long Pow(long x, long y) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } long Pow_Mod(long x, long y, long mod) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } int gcd(int x, int y){ if(x>y){int tmp = x; x = y; y = tmp;} while(x>0){ y %= x; int tmp = x; x = y; y = tmp; } return y; } int max(int x, int y) { return x > y ? x : y; } int min(int x, int y) { return x < y ? x : y; } double max(double x, double y) { return x > y ? x : y; } double min(double x, double y) { return x < y ? x : y; } long max(long x, long y) { return x > y ? x : y; } long min(long x, long y) { return x < y ? x : y; } int abs(int x) { return x > 0 ? x : -x; } double abs(double x) { return x > 0 ? x : -x; } long abs(long x) { return x > 0 ? x : -x; } boolean zero(double x) { return abs(x) < eps; } double sin(double x){return Math.sin(x);} double cos(double x){return Math.cos(x);} double tan(double x){return Math.tan(x);} double sqrt(double x){return Math.sqrt(x);} }