Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 35605 Accepted: 15621
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
Source
Northeastern Europe 2002, Far-Eastern Subregion題意:求最長上升子序列長度
題解:DP 這題我WA了兩發.....~~~~(>_<)~~~~
AC代碼:
#include#include #define N 1005 using namespace std; int dp[N],num[N],n; int main() { cin.sync_with_stdio(false); while(cin>>n){ int res=1; for(int i=0;i >num[i]; for(int i=1;i num[j])dp[i]=max(dp[i],dp[j]+1); else if(num[i]==num[j])dp[i]=max(dp[i],dp[j]); } if(res