Description
Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers modulo functions of these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be of only theoretical interest.
This problem involves the efficient computation of integer roots of numbers.
Given an integer and an integer you are to write a program that determines , the positive root of p. In this problem, given such integers n and p, p will always be of the form for an integer k (this integer is what your program must find).
The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs , and there exists an integer k, such that .
For each integer pair n and p the value should be printed, i.e., the number k such that .
2 16 3 27 7 4357186184021382204544
4 3 1234
題意:給出你n,p,n的k次方等於p,讓你求k
思路:首先得了解acm中常用的極限值
int和long都是用32位來存儲最大值和最小值分別為2147483647(109), -2147483648;
long long 是用64位來存儲最大值和最小值分別為9223372036854775807(1018),-9223372036854775808;
float的最大值和最小值分別為3.40282e+038(1038),1.17549e-038(10-38);
double的最大值和最小值分別為1.79769e+308(10308),2.22507e-308(10-308)
題目給出的n在10^108,所以用double
#include#include #include #include int main() { double k,p,n; while(~scanf("%lf %lf",&n,&p)) { int low,high,mid; low=1; high=pow(10,9); while(low<=high) { mid=(low+high)/2; k=pow(mid,n); if(k==p) { printf("%d\n",mid); break; } else if(k
看到網上大牛們的做法,感覺很神奇,特此膜拜
題意:給出n和p,求出 ,但是p可以很大()
如何存儲p?不用大數可不可以?
先看看double行不行:指數范圍在-307~308之間(以10為基數),有效數字為15位。
誤差分析:
令f(p)=p^(1/n),Δ=f(p+Δp)-f(p)
則由泰勒公式得
(Δp的上界是因為double的精度最多是15位,n有下界是因為 )
由上式知,當Δp最大,n最小的時候誤差最大。
根據題目中的范圍,帶入誤差公式得Δ<9.0e-7,說明double完全夠用(這從一方面說明有效數字15位還是比較足的(相對於float),這也是float用的很少的原因)
這樣就滿足題目要求,所以可以用double過這一題。
#include#include int main() { double a, b; while(scanf("%lf%lf",&a,&b) != EOF) printf("%.0lf\n",pow(b,1/a)) return 0; }