目標:
這次學習的目標是回答下面的幾個問題:
1 圖片像素是如何被掃描的?
2OpenCV 矩陣值如何被存儲?
3如何衡量算法的性能?
4什麼是查找表和為什麼要用他們?
看完這篇,希望能夠解決上面的這些問題。
正文:
首先我們考慮一下簡單的色彩降低方法(color reduction method,翻譯的不好請指正),如果使用的是c或c++無符號的char(八字節大小的空間),一個信道(channel)有256個不同的值(2^8=256),但是如果使用的是GRB方案,三個channel的話,顏色的數量就會變為256*256*256,大概是16個million這麼多,這麼多的顏色數量,對於計算機來說仍然是一個負擔,所以可以想一些方法來降低這些色彩數量。
可以使用簡單的方法來降低圖像色彩空間,比如,將0-9的數字都統一用0來代替,10-19的數字都統一用10代替。這種轉換方案可以用下面的公式表示
通過上面的公式,把所有像素點的值更新一下。但是,上面的公式中有除法,這裡要表達一個是,計算量比較多的情況下,不用乘除,就不要用,最好把他們轉換為加減。我們知道,在轉換前像素點的值只有256個,所以我們可以用查找表的方式,我們事先把所有的計算結果都保存在一個數組裡,每次要執行上面的公式計算的時候,結果直接從數組裡取出來就ok了。比如32對應30,表table[32]=30是早計算出來的,直接訪問table[32]就OK了。
圖片矩陣如何在內存中存儲的:
灰度圖片的矩陣存儲方式:
灰度圖片的每一個像素點,只由一個值來表示,所以,就是一個普通的二維矩陣。
彩色圖片的矩陣存儲方式:
彩色圖片的存儲方式和灰度圖片不一樣,這裡展示的是RGB格式的,可以看到,每一個像素,由三個值,代表藍色,綠色,紅色的三個數值表示,存儲方式不是三維的,而是二維,不過列向量放大了三倍。從圖片中可以清楚的看到。
返回欄目頁:http://www.bianceng.cn/Programming/cplus/
效率:
比較像素數量降低方式效率的代碼,在本文的最後面,代碼看上去很多,其實結構比較簡單,看一會兒就明白了。附上一張結果圖:
最快的OpenCV內的LUT函數。關於LUT,看這裡
可以粗略的看一下代碼,代碼不難,很容易懂:
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> #include <sstream> using namespace std; using namespace cv; static void help() { //這裡提示輸入有三個參數,第一個是圖像的名字,第二個是參數是公式中的降低顏色數的數字,這裡是10,第三個參數,如果是[G]代表是灰度圖片,否則不是。 cout << "\n--------------------------------------------------------------------------" << endl << "This program shows how to scan image objects in OpenCV (cv::Mat). As use case" << " we take an input image and divide the native color palette (255) with the " << endl << "input. Shows C operator[] method, iterators and at function for on-the-fly item address calculation."<< endl << "Usage:" << endl << "./howToScanImages imageNameToUse divideWith [G]" << endl << "if you add a G parameter the image is processed in gray scale" << endl << "--------------------------------------------------------------------------" << endl << endl; } Mat& ScanImageAndReduceC(Mat& I, const uchar* table); Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table); Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar * table); /* 程序主要是看不同的color reduction方式對於程序運行速度的影響。 使用getTickCount()函數來獲取當前時間,利用當前時間-上次獲取的時間,來得到運行時間 */ int main( int argc, char* argv[]) { help(); if (argc < 3) { cout << "Not enough parameters" << endl; return -1; } Mat I, J; if( argc == 4 && !strcmp(argv[3],"G") ) I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE); else I = imread(argv[1], CV_LOAD_IMAGE_COLOR); if (!I.data) { cout << "The image" << argv[1] << " could not be loaded." << endl; return -1; } int divideWith = 0; // convert our input string to number - C++ style stringstream s; //使用stringstream來負責將參數轉換為數字 s << argv[2]; s >> divideWith; if (!s || !divideWith) { cout << "Invalid number entered for dividing. " << endl; return -1; } uchar table[256]; for (int i = 0; i < 256; ++i) table[i] = (uchar)(divideWith * (i/divideWith)); const int times = 100; double t; t = (double)getTickCount(); for (int i = 0; i < times; ++i) { cv::Mat clone_i = I.clone(); J = ScanImageAndReduceC(clone_i, table); } t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the C operator [] (averaged for " << times << " runs): " << t << " milliseconds."<< endl; t = (double)getTickCount(); for (int i = 0; i < times; ++i) { cv::Mat clone_i = I.clone(); J = ScanImageAndReduceIterator(clone_i, table); } t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the iterator (averaged for " << times << " runs): " << t << " milliseconds."<< endl; t = (double)getTickCount(); for (int i = 0; i < times; ++i) { cv::Mat clone_i = I.clone(); ScanImageAndReduceRandomAccess(clone_i, table); } t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the on-the-fly address generation - at function (averaged for " << times << " runs): " << t << " milliseconds."<< endl; Mat lookUpTable(1, 256, CV_8U); uchar* p = lookUpTable.data; for( int i = 0; i < 256; ++i) p[i] = table[i]; t = (double)getTickCount(); for (int i = 0; i < times; ++i) LUT(I, lookUpTable, J); t = 1000*((double)getTickCount() - t)/getTickFrequency(); t /= times; cout << "Time of reducing with the LUT function (averaged for " << times << " runs): " << t << " milliseconds."<< endl; return 0; } Mat& ScanImageAndReduceC(Mat& I, const uchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); int channels = I.channels(); int nRows = I.rows; int nCols = I.cols * channels; if (I.isContinuous()) { nCols *= nRows; nRows = 1; } int i,j; uchar* p; for( i = 0; i < nRows; ++i) { p = I.ptr<uchar>(i); for ( j = 0; j < nCols; ++j) { p[j] = table[p[j]]; } } return I; } Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); const int channels = I.channels(); switch(channels) { case 1: { MatIterator_<uchar> it, end; for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it) *it = table[*it]; break; } case 3: { MatIterator_<Vec3b> it, end; for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it) { (*it)[0] = table[(*it)[0]]; (*it)[1] = table[(*it)[1]]; (*it)[2] = table[(*it)[2]]; } } } return I; } Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); const int channels = I.channels(); switch(channels) { case 1: { for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ) I.at<uchar>(i,j) = table[I.at<uchar>(i,j)]; break; } case 3: { Mat_<Vec3b> _I = I; for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ) { _I(i,j)[0] = table[_I(i,j)[0]]; _I(i,j)[1] = table[_I(i,j)[1]]; _I(i,j)[2] = table[_I(i,j)[2]]; } I = _I; break; } } return I; }
作者:csdn博客 鐘桓