程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> C++ >> 關於C++ >> C++回溯法實例剖析

C++回溯法實例剖析

編輯:關於C++

C++回溯法實例剖析。本站提示廣大學習愛好者:(C++回溯法實例剖析)文章只能為提供參考,不一定能成為您想要的結果。以下是C++回溯法實例剖析正文


本文實例講述了C++的回溯法,分享給年夜家供年夜家參考之用。詳細辦法剖析以下:

普通來講,回溯法是一種列舉狀況空間中一切能夠狀況的體系辦法,它是一個普通性的算法框架。

解向量a=(a1, a2, ..., an),個中每一個元素ai取自一個無限序列集Si,如許的解向量可以表現一個分列,個中ai是分列中的第i個元素,也能夠表現子集S,個中ai為真當且僅當選集中的第i個元素在S中;乃至可以表現游戲的行為序列或許圖中的途徑。

在回溯法的每步,我們從一個給定的部門解a={a1, a2, ..., ak}開端,測驗考試在最初添加元從來擴大這個部門解,擴大以後,我們必需測試它能否為一個完全解,假如是的話,就輸入這個解;假如不完全,我們必需檢討這個部門解能否仍有能夠擴大成完全解,假如有能夠,遞歸下去;假如沒能夠,從a中刪除新參加的最初一個元素,然後測驗考試該地位上的其他能夠性。

用一個全局變量來掌握回溯能否完成,這個變量設為finished,那末回溯框架以下,可謂是回溯年夜法之精華與神器

bool finished = false;

void backTack(int input[], int inputSize, int index, int states[], int stateSize)
{
 int candidates[MAXCANDIDATE];
 int ncandidates;

 if (isSolution(input, inputSize, index) == true)
 {
 processSolution(input, inputSize, index);
 }
 else
 {
 constructCandidate(input, inputSize, index, candidates, &ncandidates);
 for (int i = 0; i < ncandidates; i++)
 {
  input[index] = candidates[i];
  backTack(input, inputSize, index + 1);
  if (finished)
  return;
 }
 }
}

不拘泥於框架的情勢,我們可以編寫出以下代碼:

#include <iostream>

using namespace std;

char str[] = "abc";
const int size = 3;

int constructCandidate(bool *flag, int size = 2)
{
 flag[0] = true;
 flag[1] = false;

 return 2;
}

void printCombine(const char *str, bool *flag, int pos, int size)
{
 if (str == NULL || flag == NULL || size <= 0)
 return;
 
 if (pos == size)
 {
 cout << "{ ";
 for (int i = 0; i < size; i++)
 {
  if (flag[i] == true)
  cout << str[i] << " ";
 }
 cout << "}" << endl;
 }
 else
 {
 bool candidates[2];
 int number = constructCandidate(candidates);
 for (int j = 0; j < number; j++)
 {
  flag[pos] = candidates[j];
  printCombine(str, flag, pos + 1, size);
 }
 }
}

void main()
{
 bool *flag = new bool[size];
 if (flag == NULL)
 return;
 printCombine(str, flag, 0, size);
 delete []flag;
}

采取回溯法框架來盤算字典序分列:

#include <iostream>

using namespace std;

char str[] = "abc";
const int size = 3;

void constructCandidate(char *input, int inputSize, int index, char *states, char *candidates, int *ncandidates)
{
 if (input == NULL || inputSize <= 0 || index < 0 || candidates == NULL || ncandidates == NULL)
 return;
 
 bool buff[256];
 for (int i = 0; i < 256; i++)
 buff[i] = false;
 int count = 0;
 for (int i = 0; i < index; i++)
 {
 buff[states[i]] = true;
 }
 for (int i = 0; i < inputSize; i++)
 {
 if (buff[input[i]] == false)
  candidates[count++] = input[i];
 }
 *ncandidates = count;
 return;
}

bool isSolution(int index, int inputSize)
{
 if (index == inputSize)
 return true;
 else
 return false;
}

void processSolution(char *input, int inputSize)
{
 if (input == NULL || inputSize <= 0)
 return;

 for (int i = 0; i < inputSize; i++)
 cout << input[i];
 cout << endl;
}

void backTack(char *input, int inputSize, int index, char *states, int stateSize)
{
 if (input == NULL || inputSize <= 0 || index < 0 || states == NULL || stateSize <= 0)
 return;
 
 char candidates[100];
 int ncandidates;
 if (isSolution(index, inputSize) == true)
 {
 processSolution(states, inputSize);
 return;
 }
 else
 {
 constructCandidate(input, inputSize, index, states, candidates, &ncandidates);
 for (int i = 0; i < ncandidates; i++)
 {
  states[index] = candidates[i];
  backTack(input, inputSize, index + 1, states, stateSize);
 }
 }
}

void main()
{
 char *candidates = new char[size];
 if (candidates == NULL)
 return;
 backTack(str, size, 0, candidates, size);
 delete []candidates;
}

比較上述兩種情況,可以發明獨一的差別在於全分列對以後解向量沒有請求,而字典序對以後解向量是有請求的,須要曉得以後解的狀況!
八皇後回溯法求解:

#include <iostream>

using namespace std;

int position[8];

void constructCandidate(int *input, int inputSize, int index, int *states, int *candidates, int *ncandidates)
{
 if (input == NULL || inputSize <= 0 || index < 0 || candidates == NULL || ncandidates == NULL)
 return;
 
 *ncandidates = 0;
 bool flag;
 for (int i = 0; i < inputSize; i++)
 {
 flag = true;
 for (int j = 0; j < index; j++)
 {
  if (abs(index - j) == abs(i - states[j]))
  flag = false;
  if (i == states[j])
  flag = false;
 }

 if (flag == true)
 {
  candidates[*ncandidates] = i;
  *ncandidates = *ncandidates + 1;
 }
 }
/*
 cout << "ncandidates = " << *ncandidates << endl;
 system("pause");*/

 return;
}

bool isSolution(int index, int inputSize)
{
 if (index == inputSize)
 return true;
 else
 return false;
}

void processSolution(int &count)
{
 count++;
}

void backTack(int *input, int inputSize, int index, int *states, int stateSize, int &count)
{
 if (input == NULL || inputSize <= 0 || index < 0 || states == NULL || stateSize <= 0)
 return;
 
 int candidates[8];
 int ncandidates;
 if (isSolution(index, inputSize) == true)
 {
 processSolution(count);
 }
 else
 {
 constructCandidate(input, inputSize, index, states, candidates, &ncandidates);
 for (int i = 0; i < ncandidates; i++)
 {
  states[index] = candidates[i];
  backTack(input, inputSize, index + 1, states, stateSize, count);
 }
 }
}

void main()
{
 //初始化棋局
 for (int i = 0; i < 8; i++)
 position[i] = i;

 int states[8];
 int count = 0;
 backTack(position, 8, 0, states, 8, count);
 cout << "count = " << count << endl;
}

願望本文所述對年夜家C++法式算法設計的進修有所贊助。

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved