深刻分析設計形式中的組合形式運用及在C++中的完成。本站提示廣大學習愛好者:(深刻分析設計形式中的組合形式運用及在C++中的完成)文章只能為提供參考,不一定能成為您想要的結果。以下是深刻分析設計形式中的組合形式運用及在C++中的完成正文
組合形式將對象組分解樹形構造以表現“部門-全體”的條理構造。C o m p o s i t e 使得用戶對單個對象和組合對象的應用具有分歧性。
形式圖:
實用場景:
舉例:
namespace FactoryMethod_DesignPattern { using System; using System.Collections; abstract class Component { protected string strName; public Component(string name) { strName = name; } abstract public void Add(Component c); public abstract void DumpContents(); // other operations for delete, get, etc. } class Composite : Component { private ArrayList ComponentList = new ArrayList(); public Composite(string s) : base(s) {} override public void Add(Component c) { ComponentList.Add(c); } public override void DumpContents() { // First dump the name of this composite node Console.WriteLine("Node: {0}", strName); // Then loop through children, and get then to dump their contents foreach (Component c in ComponentList) { c.DumpContents(); } } } class Leaf : Component { public Leaf(string s) : base(s) {} override public void Add(Component c) { Console.WriteLine("Cannot add to a leaf"); } public override void DumpContents() { Console.WriteLine("Node: {0}", strName); } } /// <summary> /// Summary description for Client. /// </summary> public class Client { Component SetupTree() { // here we have to create a tree structure, // consisting of composites and leafs. Composite root = new Composite("root-composite"); Composite parentcomposite; Composite composite; Leaf leaf; parentcomposite = root; composite = new Composite("first level - first sibling - composite"); parentcomposite.Add(composite); leaf = new Leaf("first level - second sibling - leaf"); parentcomposite.Add(leaf); parentcomposite = composite; composite = new Composite("second level - first sibling - composite"); parentcomposite.Add(composite); composite = new Composite("second level - second sibling - composite"); parentcomposite.Add(composite); // we will leaf the second level - first sibling empty, and start // populating the second level - second sibling parentcomposite = composite; leaf = new Leaf("third level - first sibling - leaf"); parentcomposite.Add(leaf); leaf = new Leaf("third level - second sibling - leaf"); parentcomposite.Add(leaf); composite = new Composite("third level - third sibling - composite"); parentcomposite.Add(composite); return root; } public static int Main(string[] args) { Component component; Client c = new Client(); component = c.SetupTree(); component.DumpContents(); return 0; } } }
可以看出,Composite類型的對象可以包括其它Component類型的對象。換而言之,Composite類型對象可以含有其它的樹枝(Composite)類型或樹葉(Leaf)類型的對象。
分解形式的完成依據所完成接口的差別分為兩種情勢,分離稱為平安形式和通明形式。分解形式可以不供給父對象的治理辦法,但分解形式必需在適合的處所供給子對象的治理辦法(諸如:add、remove、getChild等)。
通明方法
作為第一種選擇,在Component外面聲明一切的用來治理子類對象的辦法,包含add()、remove(),和getChild()辦法。如許做的利益是一切的構件類都有雷同的接口。在客戶端看來,樹葉類對象與分解類對象的差別最少在接口條理上消逝了,客戶端可以一致同的看待一切的對象。這就是通明情勢的分解形式。
這個選擇的缺陷是不敷平安,由於樹葉類對象和分解類對象在實質上是有差別的。樹葉類對象弗成能有下一個條理的對象,是以add()、remove()和getChild()辦法沒成心義,是在編譯時代不會失足,而只會在運轉時代才會失足。
平安方法
第二種選擇是在Composite類外面聲明一切的用來治理子類對象的辦法。如許的做法是平安的做法,由於樹葉類型的對象基本就沒有治理子類對象的辦法,是以,假如客戶端對樹葉類對象應用這些辦法時,法式會在編譯時代失足。
這個選擇的缺陷是不敷通明,由於樹葉類和分解類將具有分歧的接口。
這兩個情勢各有優缺陷,須要依據軟件的詳細情形做出棄取決議。
平安式的分解形式完成: 只要composite有Add ,remove,delete等辦法.
以下示例性代碼演示了平安式的分解形式代碼:
// Composite pattern -- Structural example using System; using System.Text; using System.Collections; // "Component" abstract class Component { // Fields protected string name; // Constructors public Component( string name ) { this.name = name; } // Operation public abstract void Display( int depth ); } // "Composite" class Composite : Component { // Fields private ArrayList children = new ArrayList(); // Constructors public Composite( string name ) : base( name ) {} // Methods public void Add( Component component ) { children.Add( component ); } public void Remove( Component component ) { children.Remove( component ); } public override void Display( int depth ) { Console.WriteLine( new String( '-', depth ) + name ); // Display each of the node's children foreach( Component component in children ) component.Display( depth + 2 ); } } // "Leaf" class Leaf : Component { // Constructors public Leaf( string name ) : base( name ) {} // Methods public override void Display( int depth ) { Console.WriteLine( new String( '-', depth ) + name ); } } /// <summary> /// Client test /// </summary> public class Client { public static void Main( string[] args ) { // Create a tree structure Composite root = new Composite( "root" ); root.Add( new Leaf( "Leaf A" )); root.Add( new Leaf( "Leaf B" )); Composite comp = new Composite( "Composite X" ); comp.Add( new Leaf( "Leaf XA" ) ); comp.Add( new Leaf( "Leaf XB" ) ); root.Add( comp ); root.Add( new Leaf( "Leaf C" )); // Add and remove a leaf Leaf l = new Leaf( "Leaf D" ); root.Add( l ); root.Remove( l ); // Recursively display nodes root.Display( 1 ); } }
通明式的分解形式完成: 每一個裡都有add,remove等修正辦法.
以下示例性代碼演示了平安式的分解形式代碼:
// Composite pattern -- Structural example using System; using System.Text; using System.Collections; // "Component" abstract class Component { // Fields protected string name; // Constructors public Component( string name ) { this.name = name; } // Methods abstract public void Add(Component c); abstract public void Remove( Component c ); abstract public void Display( int depth ); } // "Composite" class Composite : Component { // Fields private ArrayList children = new ArrayList(); // Constructors public Composite( string name ) : base( name ) {} // Methods public override void Add( Component component ) { children.Add( component ); } public override void Remove( Component component ) { children.Remove( component ); } public override void Display( int depth ) { Console.WriteLine( new String( '-', depth ) + name ); // Display each of the node's children foreach( Component component in children ) component.Display( depth + 2 ); } } // "Leaf" class Leaf : Component { // Constructors public Leaf( string name ) : base( name ) {} // Methods public override void Add( Component c ) { Console.WriteLine("Cannot add to a leaf"); } public override void Remove( Component c ) { Console.WriteLine("Cannot remove from a leaf"); } public override void Display( int depth ) { Console.WriteLine( new String( '-', depth ) + name ); } } /// <summary> /// Client test /// </summary> public class Client { public static void Main( string[] args ) { // Create a tree structure Composite root = new Composite( "root" ); root.Add( new Leaf( "Leaf A" )); root.Add( new Leaf( "Leaf B" )); Composite comp = new Composite( "Composite X" ); comp.Add( new Leaf( "Leaf XA" ) ); comp.Add( new Leaf( "Leaf XB" ) ); root.Add( comp ); root.Add( new Leaf( "Leaf C" )); // Add and remove a leaf Leaf l = new Leaf( "Leaf D" ); root.Add( l ); root.Remove( l ); // Recursively display nodes root.Display( 1 ); } }
實例
再看看一個完全些的例子:
#include <iostream> #include <string> #include <list> using namespace std; class Component { protected: string name; public: Component(string name) :name(name) { } virtual void AddComponent(Component *component) { } virtual void RemoveComponent(Component *component) { } virtual void GetChild(int depth) { } }; class Leaf: public Component { public: Leaf(string name) :Component(name) { } void AddComponent(Component *component) { cout<<"Leaf can't add component"<<endl; } void RemoveComponent(Component *component) { cout<<"Leaf can't remove component"<<endl; } void GetChild(int depth) { string _tmpstring(depth, '-'); cout<<_tmpstring<<name<<endl; } }; class Composite:public Component { private: list<Component*> _componets; public: Composite(string name) :Component(name) { } void AddComponent(Component *component) { _componets.push_back(component); } void RemoveComponent(Component *component) { _componets.remove(component); } void GetChild(int depth) { string tmpstring (depth, '-'); cout<<tmpstring<<name<<endl; list<Component*>::iterator iter = _componets.begin(); for(; iter != _componets.end(); iter++) { (*iter)->GetChild(depth + 2); } } }; int main() { Composite *root = new Composite("root"); Leaf *leaf1 = new Leaf("leaf1"); Leaf *leaf2 = new Leaf("leaf2"); root->AddComponent(leaf1); root->AddComponent(leaf2); Composite *lay2 = new Composite("layer2"); Leaf *leaf4 = new Leaf("leaf4"); lay2->AddComponent(leaf4); Composite *lay1 = new Composite("layer1"); Leaf *leaf3 = new Leaf("leaf3"); lay1->AddComponent(leaf3); lay1->AddComponent(lay2); root->AddComponent(lay1); root->GetChild(1); cout<<endl; lay1->GetChild(1); cout<<endl; lay2->GetChild(1); delete root; delete lay1; delete lay2; delete leaf1; delete leaf2; delete leaf3; delete leaf4; system("pause"); return 0; }
輸入: