【BZOJ】1013: [JSOI2008]球形空間產生器sphere,bzojjsoi2008
【BZOJ】1013: [JSOI2008]球形空間產生器sphere
題意:給n+1個n維的點的坐標,要你求出一個到這n+1個點距離相等的點的坐標;
思路:高斯消元即第i個點和第i+1個點處理出一個式子,這樣n+1個點正好有n個系數的n元變量,即可求解。
式子:Σ( (a[i][j] - x[j])^2 ) = Σ( a[i+1][j] - x[j])^2 ) =>Σ( x[j]*[2*(a[i+1][j]-a[i][j])] ) = Σ(a[i+1][j]*a[i+1][j] - a[i][j]*a[i][j]);直接預處理即可;
注意:在Gauss處理出上三角陣的過程中,每次要選出主對角線絕對值最大的行作為參考行,貌似是精度問題。還有就是歸零的過程中,要變成參考行在消,為了不出現除0的情況。

![]()
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
using namespace std;
typedef long long ll;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
double a[11][11],A[12][12];
int n;
void Gauss()
{
int i,j,k;
rep1(i,1,n){
int mx = i;
rep1(j,i+1,n) if(fabs(A[mx][i]) < fabs(A[j][i])) mx = j;
rep1(j,i,n+1) swap(A[mx][j],A[i][j]);
rep1(j,i+1,n)if(A[i][i] != 0){
double y = A[j][i]/A[i][i];
rep1(k,i,n+1) A[j][k] -= y*A[i][k];
}
}
for(int i = n;i >= 1;i--){
rep1(j,i+1,n) A[i][n+1] -= A[i][j] * A[j][n+1];
A[i][n+1] /= A[i][i]; //化為系數為1;保證有解,則A[i][i] != 0;
}
}
int main()
{
int i,j;
scanf("%d",&n);
rep1(i,1,n+1)
rep1(j,1,n)
scanf("%lf",&a[i][j]);
rep1(i,1,n)
rep1(j,1,n){
A[i][j] = 2*(a[i+1][j] - a[i][j]);
A[i][n+1] += a[i+1][j]*a[i+1][j] - a[i][j]*a[i][j];
}
Gauss();
printf("%.3f",A[1][n+1]);
rep1(i,2,n) printf(" %.3f",A[i][n+1]);
}
View Code