程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> C語言 >> 關於C語言 >> CUDA 4,CUDA

CUDA 4,CUDA

編輯:關於C語言

CUDA 4,CUDA


device管理

NVIDIA提供了集中凡是來查詢和管理GPU device,掌握GPU信息查詢很重要,因為這可以幫助你設置kernel的執行配置。

本博文將主要介紹下面兩方面內容:

  • CUDA runtime API function
  • NVIDIA系統管理命令行

使用runtime API來查詢GPU信息

你可以使用下面的function來查詢所有關於GPU device 的信息:

cudaError_t cudaGetDeviceProperties(cudaDeviceProp *prop, int device);

GPU的信息放在cudaDeviceProp這個結構體中。

代碼

#include <cuda_runtime.h>
#include <stdio.h>
int main(int argc, char **argv) {
  printf("%s Starting...\n", argv[0]); int deviceCount = 0; cudaError_t error_id = cudaGetDeviceCount(&deviceCount); if (error_id != cudaSuccess) { printf("cudaGetDeviceCount returned %d\n-> %s\n", (int)error_id, cudaGetErrorString(error_id)); printf("Result = FAIL\n"); exit(EXIT_FAILURE); } if (deviceCount == 0) { printf("There are no available device(s) that support CUDA\n"); } else { printf("Detected %d CUDA Capable device(s)\n", deviceCount); }
int dev, driverVersion = 0, runtimeVersion = 0; dev =0; cudaSetDevice(dev); cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, dev); printf("Device %d: \"%s\"\n", dev, deviceProp.name); cudaDriverGetVersion(&driverVersion); cudaRuntimeGetVersion(&runtimeVersion); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n",driverVersion/1000, (driverVersion%100)/10,runtimeVersion/1000, (runtimeVersion%100)/10); printf(" CUDA Capability Major/Minor version number: %d.%d\n",deviceProp.major, deviceProp.minor); printf(" Total amount of global memory: %.2f MBytes (%llu bytes)\n",(float)deviceProp.totalGlobalMem/(pow(1024.0,3)),(unsigned long long) deviceProp.totalGlobalMem); printf(" GPU Clock rate: %.0f MHz (%0.2f GHz)\n",deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f); printf(" Memory Clock rate: %.0f Mhz\n",deviceProp.memoryClockRate * 1e-3f); printf(" Memory Bus Width: %d-bit\n",deviceProp.memoryBusWidth); if (deviceProp.l2CacheSize) { printf(" L2 Cache Size: %d bytes\n", deviceProp.l2CacheSize); }
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", deviceProp.maxTexture1D , deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1], deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1], deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1], deviceProp.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %lu bytes\n",deviceProp.totalConstMem); printf(" Total amount of shared memory per block: %lu bytes\n",deviceProp.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n",deviceProp.regsPerBlock); printf(" Warp size: %d\n", deviceProp.warpSize); printf(" Maximum number of threads per multiprocessor: %d\n",deviceProp.maxThreadsPerMultiProcessor); printf(" Maximum number of threads per block: %d\n",deviceProp.maxThreadsPerBlock);
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
printf(" Maximum memory pitch: %lu bytes\n", deviceProp.memPitch);
exit(EXIT_SUCCESS); }

 

編譯運行:

$ nvcc checkDeviceInfor.cu -o checkDeviceInfor
$ ./checkDeviceInfor

輸出:

./checkDeviceInfor Starting...
Detected 2 CUDA Capable device(s)
Device 0: "Tesla M2070"
CUDA Driver Version / Runtime Version 5.5 / 5.5
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 5.25 MBytes (5636554752 bytes)
GPU Clock rate: 1147 MHz (1.15 GHz)
Memory Clock rate: 1566 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes

決定最佳GPU

對於支持多GPU的系統,是需要從中選擇一個來作為我們的device的,抉擇出最佳計算性能GPU的一種方法就是由其擁有的處理器數量決定,可以用下面的代碼來選擇最佳GPU。

int numDevices = 0;
cudaGetDeviceCount(&numDevices);
if (numDevices > 1) {
    int maxMultiprocessors = 0, maxDevice = 0;
    for (int device=0; device<numDevices; device++) {
        cudaDeviceProp props;
        cudaGetDeviceProperties(&props, device);
        if (maxMultiprocessors < props.multiProcessorCount) {
            maxMultiprocessors = props.multiProcessorCount;
            maxDevice = device;
        }
    }
    cudaSetDevice(maxDevice);
}    

使用nvidia-smi來查詢GPU信息

nvidia-smi是一個命令行工具,可以幫助你管理操作GPU device,並且允許你查詢和更改device狀態。

nvidia-smi用處很多,比如,下面的指令:

$ nvidia-smi -L
GPU 0: Tesla M2070 (UUID: GPU-68df8aec-e85c-9934-2b81-0c9e689a43a7)
GPU 1: Tesla M2070 (UUID: GPU-382f23c1-5160-01e2-3291-ff9628930b70)

然後可以使用下面的命令來查詢GPU 0 的詳細信息:

$nvidia-smi –q –i 0

下面是該命令的一些參數,可以精簡nvidia-smi的顯示信息:

MEMORY

UTILIZATION

ECC

TEMPERATURE

POWER

CLOCK

COMPUTE

PIDS

PERFORMANCE

SUPPORTED_CLOCKS

PAGE_RETIREMENT

ACCOUNTING

比如,顯示只device memory的信息:

$nvidia-smi –q –i 0 –d    MEMORY | tail –n 5
Memory Usage
Total : 5375 MB
Used : 9 MB
Free : 5366 MB

設置device

對於多GPU系統,使用nvidia-smi可以查看各GPU屬性,每個GPU從0開始依次標注,使用環境變量CUDA_VISIBLE_DEVICES可以指定GPU而不用修改application。

可以設置環境變量CUDA_VISIBLE_DEVICES-2來屏蔽其他GPU,這樣只有GPU2能被使用。當然也可以使用CUDA_VISIBLE_DEVICES-2,3來設置多個GPU,他們的device ID分別為0和1.

 

代碼下載:CodeSamples.zip

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved