memcached是什麼呢?memcached是一個優秀的、高性能的內存緩存工具。
memcached具有以下的特點:
本文主要講解memcached的連接模型,memcached由一條主線程(連接線程)監聽連接,然後把成功的連接交給子線程(工作線程)處理讀寫操作。N條【啟動memcached通過-t命令指定】子線程(工作線程)負責讀寫數據,一條子線程(工作線程)維護著多個連接。一個conn結構體對象對應著一個連接,主線程(連接線程)成功連接後,會把連接的內容賦值到一個conn結構體對象,並把這個conn結構體對象傳遞給一條子線程(工作線程)處理。
conn結構體:
1 //memcached.c 2 int main{ 3 4 // ...... 5 6 // 第一步:初始化主線程的事件機制 7 /* initialize main thread libevent instance */ 8 // libevent 事件機制初始化 9 main_base = event_init(); 10 11 // ...... 12 13 // 第二步:初始化 N 個 (初始值200,當連接超過200個的時候會往上遞增) conn結構體對象 14 // 空閒連接數組初始化 15 conn_init(); 16 17 // ...... 18 19 20 // 第三步:啟動工作線程 21 /* start up worker threads if MT mode */ 22 thread_init(settings.num_threads, main_base); 23 24 // ...... 25 26 // 第四步:初始化socket,綁定監聽端口,為主線程的事件機制設置連接監聽事件(event_set、event_add) 27 /** 28 memcached 有可配置的兩種模式: unix 域套接字和 TCP/UDP, 允許客戶端以兩種方式向 memcached 發起請求. 客戶端和服務器在同一個主機上的情況下可以用 unix 域套接字, 否則可以采用 TCP/UDP 的模式. 兩種模式是不兼容的. 29 以下的代碼便是根據 settings.socketpath 的值來決定啟用哪種方式. 30 */ 31 /** 32 第一種, unix 域套接字. 33 */ 34 /* create unix mode sockets after dropping privileges */ 35 if (settings.socketpath != NULL) { 36 errno = 0; 37 if (server_socket_unix(settings.socketpath,settings.access)) { 38 vperror("failed to listen on UNIX socket: %s", settings.socketpath); 39 exit(EX_OSERR); 40 } 41 } 42 43 /** 44 第二種, TCP/UDP. 45 */ 46 /* create the listening socket, bind it, and init */ 47 if (settings.socketpath == NULL) { 48 const char *portnumber_filename = getenv("MEMCACHED_PORT_FILENAME"); 49 char temp_portnumber_filename[PATH_MAX]; 50 FILE *portnumber_file = NULL; 51 52 // 讀取端口號文件 53 if (portnumber_filename != NULL) { 54 snprintf(temp_portnumber_filename, 55 sizeof(temp_portnumber_filename), 56 "%s.lck", portnumber_filename); 57 58 portnumber_file = fopen(temp_portnumber_filename, "a"); 59 if (portnumber_file == NULL) { 60 fprintf(stderr, "Failed to open \"%s\": %s\n", 61 temp_portnumber_filename, strerror(errno)); 62 } 63 } 64 65 // TCP 66 errno = 0; 67 if (settings.port && server_sockets(settings.port, tcp_transport, 68 portnumber_file)) { 69 vperror("failed to listen on TCP port %d", settings.port); 70 exit(EX_OSERR); 71 } 72 73 /* 74 * initialization order: first create the listening sockets 75 * (may need root on low ports), then drop root if needed, 76 * then daemonise if needed, then init libevent (in some cases 77 * descriptors created by libevent wouldn't survive forking). 78 */ 79 80 // UDP 81 /* create the UDP listening socket and bind it */ 82 errno = 0; 83 if (settings.udpport && server_sockets(settings.udpport, udp_transport, 84 portnumber_file)) { 85 vperror("failed to listen on UDP port %d", settings.udpport); 86 exit(EX_OSERR); 87 } 88 89 if (portnumber_file) { 90 fclose(portnumber_file); 91 rename(temp_portnumber_filename, portnumber_filename); 92 } 93 } 94 95 // ...... 96 97 98 // 第五步:主線程進入事件循環 99 /* enter the event loop */ 100 // 進入事件循環 101 if (event_base_loop(main_base, 0) != 0) { 102 retval = EXIT_FAILURE; 103 } 104 105 // ...... 106 107 }
LIBEVENT_THREAD 結構體:
第三步工作線程的詳細啟動過程:
1 /* 2 * thread.c 3 * 4 * 初始化線程子系統, 創建工作線程 5 * Initializes the thread subsystem, creating various worker threads. 6 * 7 * nthreads Number of worker event handler threads to spawn 8 * 需准備的線程數 9 * main_base Event base for main thread 10 * 分發線程 11 */ 12 void thread_init(int nthreads, struct event_base *main_base) { 13 int i; 14 int power; 15 16 // 互斥量初始化 17 pthread_mutex_init(&cache_lock, NULL); 18 pthread_mutex_init(&stats_lock, NULL); 19 20 pthread_mutex_init(&init_lock, NULL); 21 //條件同步 22 pthread_cond_init(&init_cond, NULL); 23 24 pthread_mutex_init(&cqi_freelist_lock, NULL); 25 cqi_freelist = NULL; 26 27 /* Want a wide lock table, but don't waste memory */ 28 if (nthreads < 3) { 29 power = 10; 30 } else if (nthreads < 4) { 31 power = 11; 32 } else if (nthreads < 5) { 33 power = 12; 34 } else { 35 // 2^13 36 /* 8192 buckets, and central locks don't scale much past 5 threads */ 37 power = 13; 38 } 39 40 // hashsize = 2^n 41 item_lock_count = hashsize(power); 42 43 item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t)); 44 if (! item_locks) { 45 perror("Can't allocate item locks"); 46 exit(1); 47 } 48 // 初始化 49 for (i = 0; i < item_lock_count; i++) { 50 pthread_mutex_init(&item_locks[i], NULL); 51 } 52 //item_lock_type_key設置為線程的私有變量的key 53 pthread_key_create(&item_lock_type_key, NULL); 54 pthread_mutex_init(&item_global_lock, NULL); 55 56 57 // LIBEVENT_THREAD 是結合 libevent 使用的結構體, event_base, 讀寫管道 58 threads = calloc(nthreads, sizeof(LIBEVENT_THREAD)); 59 if (! threads) { 60 perror("Can't allocate thread descriptors"); 61 exit(1); 62 } 63 64 // main_base 是分發任務的線程, 即主線程 65 dispatcher_thread.base = main_base; 66 dispatcher_thread.thread_id = pthread_self(); 67 68 // 管道, libevent 通知用的 69 // 一個 LIBEVENT_THREAD 結構體對象對應由一條子線程維護 70 // 子線程通過讀管道來接收主線程的命令(例如主線程接收到新連接,會往子線程的讀管道寫入字符'c',子線程接收到命令就會做出相應的處理) 71 for (i = 0; i < nthreads; i++) { 72 int fds[2]; 73 if (pipe(fds)) { 74 perror("Can't create notify pipe"); 75 exit(1); 76 } 77 78 // 讀管道 79 threads[i].notify_receive_fd = fds[0]; 80 // 寫管道 81 threads[i].notify_send_fd = fds[1]; 82 83 // 初始化線程信息數據結構, 其中就將 event 結構體的回調函數設置為 thread_libevent_process(),此時線程還沒有創建 84 setup_thread(&threads[i]); 85 /* Reserve three fds for the libevent base, and two for the pipe */ 86 stats.reserved_fds += 5; 87 } 88 89 /* Create threads after we've done all the libevent setup. */ 90 // 創建並初始化線程, 線程的代碼都是 work_libevent() 91 for (i = 0; i < nthreads; i++) { 92 // 調用 pthread_attr_init() 和 pthread_create() 來創建子線程 93 // 子線程的函數入口 worker_libevent ,負責啟動子線程的事件循環 94 create_worker(worker_libevent, &threads[i]); 95 } 96 97 /* Wait for all the threads to set themselves up before returning. */ 98 pthread_mutex_lock(&init_lock); 99 // wait_for_thread_registration() 是 pthread_cond_wait 的調用 100 wait_for_thread_registration(nthreads); 101 pthread_mutex_unlock(&init_lock); 102 } 103 104 105 106 107 /* 108 * Set up a thread's information. 109 */ 110 // 填充 LIBEVENT_THREAD 結構體, 其中包括: 111 // 填充 struct event 112 // 初始化線程工作隊列 113 // 初始化互斥量 114 // 等 115 static void setup_thread(LIBEVENT_THREAD *me) { 116 // 子線程的事件機制,每條子線程都有一個事件機制 117 me->base = event_init(); 118 if (! me->base) { 119 fprintf(stderr, "Can't allocate event base\n"); 120 exit(1); 121 } 122 123 /* Listen for notifications from other threads */ 124 // 在線程數據結構初始化的時候, 為 me->notify_receive_fd 讀管道注冊讀事件, 回調函數是 thread_libevent_process() 125 // 為子線程的事件機制添加事件 126 event_set(&me->notify_event, me->notify_receive_fd, 127 EV_READ | EV_PERSIST, thread_libevent_process, me); 128 event_base_set(me->base, &me->notify_event); 129 130 if (event_add(&me->notify_event, 0) == -1) { 131 fprintf(stderr, "Can't monitor libevent notify pipe\n"); 132 exit(1); 133 } 134 135 // ...... 136 } 137 138 139 140 /* 141 * Worker thread: main event loop 142 * 線程函數入口, 啟動事件循環 143 */ 144 static void *worker_libevent(void *arg) { 145 LIBEVENT_THREAD *me = arg; 146 147 // ...... 148 149 // 進入事件循環 150 event_base_loop(me->base, 0); 151 return NULL; 152 }
子線程讀管道回調函數:
第四步主要是初始化socket、綁定服務器端口和IP、為主線程事件機制添加監聽連接事件:
1 // memcached.c 2 // server_sockets()->server_socket() 3 4 static int server_socket(const char *interface, 5 int port, 6 enum network_transport transport, 7 FILE *portnumber_file) { 8 9 // ...... 10 11 // getaddrinfo函數能夠處理名字到地址以及服務到端口這兩種轉換,返回的是一個addrinfo的結構(列表)指針而不是一個地址清單。 12 error= getaddrinfo(interface, port_buf, &hints, &ai); 13 14 if (error != 0) { 15 if (error != EAI_SYSTEM) 16 fprintf(stderr, "getaddrinfo(): %s\n", gai_strerror(error)); 17 else 18 perror("getaddrinfo()"); 19 return 1; 20 } 21 22 for (next= ai; next; next= next->ai_next) { 23 conn *listen_conn_add; 24 25 // new_socket() 申請了一個 UNIX 域套接字,通過調用socket()方法創建套接字,並設置把套接字為非阻塞 26 if ((sfd = new_socket(next)) == -1) { 27 28 // ...... 29 30 }// if 31 32 33 // ...... 34 35 36 // bind() 綁定源IP的端口 37 if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) { 38 39 // ...... 40 41 } else { 42 success++; 43 // bind()調用成功後,調用listen() 44 if (!IS_UDP(transport) && listen(sfd, settings.backlog) == -1) { 45 46 // ...... 47 48 } 49 50 // ...... 51 52 } 53 54 // UDP 和 TCP 區分對待, UDP 沒有連接概念, 只要綁定服務器之後, 直接讀取 socket 就好了, 所以與它對應 conn 的初始狀態應該為 conn_read; 而 TCP 對應的 conn 初始狀態應該為 conn_listening 55 if (IS_UDP(transport)) { 56 // UDP 57 int c; 58 59 for (c = 0; c < settings.num_threads_per_udp; c++) { 60 /* this is guaranteed to hit all threads because we round-robin */ 61 // 分發新的連接到線程池中的一個線程中 62 dispatch_conn_new(sfd, conn_read, EV_READ | EV_PERSIST, 63 UDP_READ_BUFFER_SIZE, transport); 64 } 65 } else { 66 // TCP 要建立連接 67 if (!(listen_conn_add = conn_new(sfd, conn_listening, 68 EV_READ | EV_PERSIST, 1, 69 transport, main_base))) { 70 fprintf(stderr, "failed to create listening connection\n"); 71 exit(EXIT_FAILURE); 72 } 73 74 // 放在頭部, listen_conn 是頭指針 75 listen_conn_add->next = listen_conn; 76 listen_conn = listen_conn_add; 77 } 78 } 79 80 freeaddrinfo(ai); 81 82 /* Return zero iff we detected no errors in starting up connections */ 83 return success == 0; 84 } 85 86 87 88 89 // 填寫 struct conn 結構體, 包括 struct conn 中的 event 結構, 並返回 90 conn *conn_new(const int sfd, enum conn_states init_state, 91 const int event_flags, 92 const int read_buffer_size, enum network_transport transport, 93 struct event_base *base) { 94 // c 指向一個新的 conn 空間 95 // 可能是出於性能的考慮, memcached 預分配了若干個 struct conn 空間 96 { 97 /* data */ 98 }; 99 conn *c = conn_from_freelist(); 100 101 if (NULL == c) { 102 // 可能分配失敗了, 因為默認數量有限. 進行新的擴展,conn_init()中初始數量是200 103 if (!(c = (conn *)calloc(1, sizeof(conn)))) { 104 fprintf(stderr, "calloc()\n"); 105 return NULL; 106 } 107 108 // ...... 109 // 填充conn結構體 110 111 }// if 112 113 114 // ...... 115 116 117 // libevent 操作: 設置事件, 設置回調函數 event_handler() 118 event_set(&c->event, sfd, event_flags, event_handler, (void *)c); 119 120 // libevent 操作:設置 c->event 的 event_base 121 event_base_set(base, &c->event); 122 123 c->ev_flags = event_flags; 124 125 // libevent 操作: 添加事件 126 if (event_add(&c->event, 0) == -1) { 127 128 // ...... 129 130 } 131 132 133 // ...... 134 135 136 return c; 137 }
所謂的memcache驅動無非是提供了 與memcache socket連接和序列化的功能
在百度上問編程題!?若是C入門還有人回答......
死心吧