我們平時經常會有一些數據運算的操作,需要調用sqrt,exp,abs等函數,那麼時候你有沒有想過:這個些函數系統是如何實現的?就拿最常用的sqrt函數來說吧,系統怎麼來實現這個經常調用的函數呢?
雖然有可能你平時沒有想過這個問題,不過正所謂是“臨陣磨槍,不快也光”,你“眉頭一皺,計上心來”,這個不是太簡單了嘛,用二分的方法,在一個區間中,每次拿中間數的平方來試驗,如果大了,就再試左區間的中間數;如果小了,就再拿右區間的中間數來試。比如求sqrt(16)的結果,你先試(0+16)/2=8,8*8=64,64比16大,然後就向左移,試(0+8)/2=4,4*4=16剛好,你得到了正確的結果sqrt(16)=4。然後你三下五除二就把程序寫出來了:
float SqrtByBisection(float n) //用二分法
{
if(n<0) //小於0的按照你需要的處理
return n;
float mid,last;
float low,up;
low=0,up=n;
mid=(low+up)/2;
do
{
if(mid*mid>n)
up=mid;
else
low=mid;
last=mid;
mid=(up+low)/2;
}while(abs(mid-last) > eps);//精度控制
return mid;
} 然後看看和系統函數性能和精度的差別(其中時間單位不是秒也不是毫秒,而是CPU Tick,不管單位是什麼,統一了就有可比性)
從圖中可以看出,二分法和系統的方法結果上完全相同,但是性能上整整差了幾百倍。為什麼會有這麼大的區別呢?難道系統有什麼更好的辦法?難道。。。。哦,對了,回憶下我們曾經的高數課,曾經老師教過我們“牛頓迭代法快速尋找平方根”,或者這種方法可以幫助我們,具體步驟如下:
求出根號a的近似值:首先隨便猜一個近似值x,然後不斷令x等於x和a/x的平均數,迭代個六七次後x的值就已經相當精確了。
例如,我想求根號2等於多少。假如我猜測的結果為4,雖然錯的離譜,但你可以看到使用牛頓迭代法後這個值很快就趨近於根號2了:
( 4 + 2/4 ) / 2 = 2.25
( 2.25 + 2/2.25 ) / 2 = 1.56944..
( 1.56944..+ 2/1.56944..) / 2 = 1.42189..
( 1.42189..+ 2/1.42189..) / 2 = 1.41423..
....
這種算法的原理很簡單,我們僅僅是不斷用(x,f(x))的切線來逼近方程x^2-a=0的根。根號a實際上就是x^2-a=0的一個正實根,這個函數的導數是2x。也就是說,函數上任一點(x,f(x))處的切線斜率是2x。那麼,x-f(x)/(2x)就是一個比x更接近的近似值。代入 f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x+a/x)/2。
相關的代碼如下:
float SqrtByNewton(float x)
{
float val = x;//最終
float last;//保存上一個計算的值
do
{
last = val;
val =(val + x/val) / 2;
}while(abs(val-last) > eps);
return val;
}然後我們再來看下性能測試:
哇塞,性能提高了很多,可是和系統函數相比,還是有這麼大差距,這是為什麼呀?想啊想啊,想了很久仍然百思不得其解。突然有一天,我在網上看到一個神奇的方法,於是就有了今天的這篇文章,廢話不多說,看代碼先:
float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating VALUE
i = 0x5f375a86- (i>>1); // gives initial guess y0
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return 1/x;
}然後我們最後一次來看下性能測試:
這次真的是質變了,結果竟然比系統的還要好。。。哥真的是震驚了!!!哥吐血了!!!一個函數引發了血案!!!血案,血案。。。
到現在你是不是還不明白那個“鬼函數”,到底為什麼速度那麼快嗎?不急,先看看下面的故事吧:
Quake-III Arena (雷神之錘3)是90年代的經典游戲之一。該系列的游戲不但畫面和內容不錯,而且即使計算機配置低,也能極其流暢地運行。這要歸功於它3D引擎的開發者約翰-卡馬克(John Carmack)。事實上早在90年代初DOS時代,只要能在PC上搞個小動畫都能讓人驚歎一番的時候,John Carmack就推出了石破天驚的Castle Wolfstein, 然後再接再勵,doom, doomII, Quake...每次都把3-D技術推到極致。他的3D引擎代碼資極度高效,幾乎是在壓搾PC機的每條運算指令。當初MS的Direct3D也得聽取他的意見,修改了不少API。
最近,QUAKE的開發商ID SOFTWARE 遵守GPL協議,公開了QUAKE-III的原代碼,讓世人有幸目睹Carmack傳奇的3D引擎的原碼。這是QUAKE-III原代碼的下載地址:
http://www.fileshack.com/file.x?fid=7547
(下面是官方的下載網址,搜索 “quake3-1.32b-source.zip” 可以找到一大堆中文網頁的。ftp://ftp.idsoftware.com/idstuff/source/quake3-1.32b-source.zip)
我們知道,越底層的函數,調用越頻繁。3D引擎歸根到底還是數學運算。那麼找到最底層的數學運算函數(在game/code/q_math.c), 必然是精心編寫的。裡面有很多有趣的函數,很多都令人驚奇,估計我們幾年時間都學不完。在game/code/q_math.c裡發現了這樣一段代碼。它的作用是將一個數開平方並取倒,經測試這段代碼比(float)(1.0/sqrt(x))快4倍:
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
} 函數返回1/sqrt(x),這個函數在圖像處理中比sqrt(x)更有用。
注意到這個函數只用了一次疊代!(其實就是根本沒用疊代,直接運算)。編譯,實驗,這個函數不僅工作的很好,而且比標准的sqrt()函數快4倍!要知道,編譯器自帶的函數,可是經過嚴格仔細的匯編優化的啊!
這個簡潔的函數,最核心,也是最讓人費解的,就是標注了“what the fuck?”的一句
i = 0x5f3759df - ( i >> 1 );
再加上y = y * ( threehalfs - ( x2 * y * y ) );
兩句話就完成了開方運算!而且注意到,核心那句是定點移位運算,速度極快!特別在很多沒有乘法指令的RISC結構CPU上,這樣做是極其高效的。
算法的原理其實不復雜,就是牛頓迭代法,用x-f(x)/f'(x)來不斷的逼近f(x)=a的根。
沒錯,一般的求平方根都是這麼循環迭代算的但是卡馬克(quake3作者)真正牛B的地方是他選擇了一個神秘的常數0x5f3759df 來計算那個猜測值,就是我們加注釋的那一行,那一行算出的值非常接近1/sqrt(n),這樣我們只需要2次牛頓迭代就可以達到我們所需要的精度。好吧如果這個還不算NB,接著看:
普渡大學的數學家Chris Lomont看了以後覺得有趣,決定要研究一下卡馬克弄出來的這個猜測值有什麼奧秘。Lomont也是個牛人,在精心研究之後從理論上也推導出一個最佳猜測值,和卡馬克的數字非常接近, 0x5f37642f。卡馬克真牛,他是外星人嗎?
傳奇並沒有在這裡結束。Lomont計算出結果以後非常滿意,於是拿自己計算出的起始值和卡馬克的神秘數字做比賽,看看誰的數字能夠更快更精確的求得平方根。結果是卡馬克贏了... 誰也不知道卡馬克是怎麼找到這個數字的。
最後Lomont怒了,采用暴力方法一個數字一個數字試過來,終於找到一個比卡馬克數字要好上那麼一丁點的數字,雖然實際上這兩個數字所產生的結果非常近似,這個暴力得出的數字是0x5f375a86。
Lomont為此寫下一篇論文,"Fast Inverse Square Root"。 論文下載地址:
http://www.math.purdue.edu/~clomont/Math/Papers/2003/InvSqrt.pdf
http://www.matrix67.com/data/InvSqrt.pdf
參考:<IEEE Standard 754 for Binary Floating-Point Arithmetic><FAST INVERSE SQUARE ROOT>
最後,給出最精簡的1/sqrt()函數:
float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating VALUE
i = 0x5f375a86- (i>>1); // gives initial guess y0
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return x;
} 大家可以嘗試在PC機、51、AVR、430、ARM、上面編譯並實驗,驚訝一下它的工作效率。
前兩天有一則新聞,大意是說 Ryszard Sommefeldt 很久以前看到這麼樣的一段 code (可能出自 Quake III 的 source code):
float InvSqrt (float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i>>1);
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x);
return x;
}