在工業控制中,工控機(一般都基於Windows平台)經常需要與智能儀表通過串口進行通信。串口通信方便易行,應用廣泛。
一般情況下,工控機和各智能儀表通過RS485總線進行通信。RS485的通信方式是半雙工的,只能由作為主節點的工控PC機依次輪詢網絡上的各智能控制單元子節點。每次通信都是由PC機通過串口向智能控制單元發布命令,智能控制單元在接收到正確的命令後作出應答。
在Win32下,可以使用兩種編程方式實現串口通信,其一是使用ActiveX控件,這種方法程序簡單,但欠靈活。其二是調用Windows的API函數,這種方法可以清楚地掌握串口通信的機制,並且自由靈活。本文我們只介紹API串口通信部分。
串口的操作可以有兩種操作方式:同步操作方式和重疊操作方式(又稱為異步操作方式)。同步操作時,API函數會阻塞直到操作完成以後才能返回(在多線程方式中,雖然不會阻塞主線程,但是仍然會阻塞監聽線程);而重疊操作方式,API函數會立即返回,操作在後台進行,避免線程的阻塞。
無論那種操作方式,一般都通過四個步驟來完成:
(1) 打開串口
(2) 配置串口
(3) 讀寫串口
(4) 關閉串口
(1) 打開串口
Win32系統把文件的概念進行了擴展。無論是文件、通信設備、命名管道、郵件槽、磁盤、還是控制台,都是用API函數CreateFile來打開或創建的。該函數的原型為:
HANDLE CreateFile( LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);
lpFileName:將要打開的串口邏輯名,如“COM1”;
dwDesiredAccess:指定串口訪問的類型,可以是讀取、寫入或二者並列;
dwShareMode:指定共享屬性,由於串口不能共享,該參數必須置為0;
lpSecurityAttributes:引用安全性屬性結構,缺省值為NULL;
dwCreationDistribution:創建標志,對串口操作該參數必須置為OPEN_EXISTING;
dwFlagsAndAttributes:屬性描述,用於指定該串口是否進行異步操作,該值為FILE_FLAG_OVERLAPPED,表示使用異步的I/O;該值為0,表示同步I/O操作;
hTemplateFile:對串口而言該參數必須置為NULL;
同步I/O方式打開串口的示例代碼:
HANDLE hCom; //全局變量,串口句柄
hCom=CreateFile("COM1",//COM1口
GENERIC_READ|GENERIC_WRITE, //允許讀和寫
0, //獨占方式
NULL,
OPEN_EXISTING, //打開而不是創建
0, //同步方式
NULL);
if(hCom==(HANDLE)-1)
{
AfxMessageBox("打開COM失敗!");
return FALSE;
}
return TRUE;
重疊I/O打開串口的示例代碼:HANDLE hCom; //全局變量,串口句柄
hCom =CreateFile("COM1", //COM1口
GENERIC_READ|GENERIC_WRITE, //允許讀和寫
0, //獨占方式
NULL,
OPEN_EXISTING, //打開而不是創建
FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重疊方式
NULL);
if(hCom ==INVALID_HANDLE_VALUE)
{
AfxMessageBox("打開COM失敗!");
return FALSE;
}
return TRUE;
(2)、配置串口
在打開通訊設備句柄後,常常需要對串口進行一些初始化配置工作。這需要通過一個DCB結構來進行。DCB結構包含了諸如波特率、數據位數、奇偶校驗和停止位數等信息。在查詢或配置串口的屬性時,都要用DCB結構來作為緩沖區。
一般用CreateFile打開串口後,可以調用GetCommState函數來獲取串口的初始配置。要修改串口的配置,應該先修改DCB結構,然後再調用SetCommState函數設置串口。
DCB結構包含了串口的各項參數設置,下面僅介紹幾個該結構常用的變量:
typedef struct _DCB{
………
//波特率,指定通信設備的傳輸速率。這個成員可以是實際波特率值或者下面的常量值之一:
DWORD BaudRate;
CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400,
CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400
DWORD fParity; // 指定奇偶校驗使能。若此成員為1,允許奇偶校驗檢查
…
BYTE ByteSize; // 通信字節位數,4—8
BYTE Parity; //指定奇偶校驗方法。此成員可以有下列值:
EVENPARITY 偶校驗 NOPARITY 無校驗
MARKPARITY 標記校驗 ODDPARITY 奇校驗
BYTE StopBits; //指定停止位的位數。此成員可以有下列值:
ONESTOPBIT 1位停止位 TWOSTOPBITS 2位停止位
ONE5STOPBITS 1.5位停止位
………
} DCB;
winbase.h文件中定義了以上用到的常量。如下:
#define NOPARITY 0
#define ODDPARITY 1
#define EVENPARITY 2
#define ONESTOPBIT 0
#define ONE5STOPBITS 1
#define TWOSTOPBITS 2
#define CBR_110 110
#define CBR_300 300
#define CBR_600 600
#define CBR_1200 1200
#define CBR_2400 2400
#define CBR_4800 4800
#define CBR_9600 9600
#define CBR_14400 14400
#define CBR_19200 19200
#define CBR_38400 38400
#define CBR_56000 56000
#define CBR_57600 57600
#define CBR_115200 115200
#define CBR_128000 128000
#define CBR_256000 256000
GetCommState函數可以獲得COM口的設備控制塊,從而獲得相關參數:BOOL GetCommState(
HANDLE hFile, //標識通訊端口的句柄
LPDCB lpDCB //指向一個設備控制塊(DCB結構)的指針
);
SetCommState函數設置COM口的設備控制塊:
BOOL SetCommState(
HANDLE hFile,
LPDCB lpDCB
);
除了在BCD中的設置外,程序一般還需要設置I/O緩沖區的大小和超時。Windows用I/O緩沖區來暫存串口輸入和輸出的數據。如果通信的速率較高,則應該設置較大的緩沖區。調用SetupComm函數可以設置串行口的輸入和輸出緩沖區的大小。
BOOL SetupComm(
HANDLE hFile, // 通信設備的句柄
DWORD dwInQueue, // 輸入緩沖區的大小(字節數)
DWORD dwOutQueue // 輸出緩沖區的大小(字節數)
);
在用ReadFile和WriteFile讀寫串行口時,需要考慮超時問題。超時的作用是在指定的時間內沒有讀入或發送指定數量的字符,ReadFile或WriteFile的操作仍然會結束。
要查詢當前的超時設置應調用GetCommTimeouts函數,該函數會填充一個COMMTIMEOUTS結構。調用SetCommTimeouts可以用某一個COMMTIMEOUTS結構的內容來設置超時。
讀寫串口的超時有兩種:間隔超時和總超時。間隔超時是指在接收時兩個字符之間的最大時延。總超時是指讀寫操作總共花費的最大時間。寫操作只支持總超時,而讀操作兩種超時均支持。用COMMTIMEOUTS結構可以規定讀寫操作的超時。
COMMTIMEOUTS結構的定義為:typedef struct _COMMTIMEOUTS {
DWORD ReadIntervalTimeout; //讀間隔超時
DWORD ReadTotalTimeoutMultiplier; //讀時間系數
DWORD ReadTotalTimeoutConstant; //讀時間常量
DWORD WriteTotalTimeoutMultiplier; // 寫時間系數
DWORD WriteTotalTimeoutConstant; //寫時間常量
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;
COMMTIMEOUTS結構的成員都以毫秒為單位。總超時的計算公式是:
總超時=時間系數×要求讀/寫的字符數+時間常量
例如,要讀入10個字符,那麼讀操作的總超時的計算公式為:
讀總超時=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant
可以看出:間隔超時和總超時的設置是不相關的,這可以方便通信程序靈活地設置各種超時。
如果所有寫超時參數均為0,那麼就不使用寫超時。如果ReadIntervalTimeout為0,那麼就不使用讀間隔超時。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都為0,則不使用讀總超時。如果讀間隔超時被設置成MAXDWORD並且讀時間系數和讀時間常量都為0,那麼在讀一次輸入緩沖區的內容後讀操作就立即返回,而不管是否讀入了要求的字符。
在用重疊方式讀寫串口時,雖然ReadFile和WriteFile在完成操作以前就可能返回,但超時仍然是起作用的。在這種情況下,超時規定的是操作的完成時間,而不是ReadFile和WriteFile的返回時間。
配置串口的示例代碼:SetupComm(hCom,1024,1024); //輸入緩沖區和輸出緩沖區的大小都是1024
COMMTIMEOUTS TimeOuts;
//設定讀超時
TimeOuts.ReadIntervalTimeout=1000;
TimeOuts.ReadTotalTimeoutMultiplier=500;
TimeOuts.ReadTotalTimeoutConstant=5000;
//設定寫超時
TimeOuts.WriteTotalTimeoutMultiplier=500;
TimeOuts.WriteTotalTimeoutConstant=2000;
SetCommTimeouts(hCom,&TimeOuts); //設置超時
DCB dcb;
GetCommState(hCom,&dcb);
dcb.BaudRate=9600; //波特率為9600
dcb.ByteSize=8; //每個字節有8位
dcb.Parity=NOPARITY; //無奇偶校驗位
dcb.StopBits=TWOSTOPBITS; //兩個停止位
SetCommState(hCom,&dcb);
PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);
在讀寫串口之前,還要用PurgeComm()函數清空緩沖區,該函數原型:BOOL PurgeComm(
HANDLE hFile, //串口句柄
DWORD dwFlags // 需要完成的操作
);
參數dwFlags指定要完成的操作,可以是下列值的組合:PURGE_TXABORT 中斷所有寫操作並立即返回,即使寫操作還沒有完成。
PURGE_RXABORT 中斷所有讀操作並立即返回,即使讀操作還沒有完成。
PURGE_TXCLEAR 清除輸出緩沖區
PURGE_RXCLEAR 清除輸入緩沖區
(3)、讀寫串口
我們使用ReadFile和WriteFile讀寫串口,下面是兩個函數的聲明:
BOOL ReadFile(
HANDLE hFile, //串口的句柄
// 讀入的數據存儲的地址,
// 即讀入的數據將存儲在以該指針的值為首地址的一片內存區
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead, // 要讀入的數據的字節數
// 指向一個DWORD數值,該數值返回讀操作實際讀入的字節數
LPDWORD lpNumberOfBytesRead,
// 重疊操作時,該參數指向一個OVERLAPPED結構,同步操作時,該參數為NULL。
LPOVERLAPPED lpOverlapped
);
BOOL WriteFile(
HANDLE hFile, //串口的句柄
// 寫入的數據存儲的地址,
// 即以該指針的值為首地址的nNumberOfBytesToWrite
// 個字節的數據將要寫入串口的發送數據緩沖區。
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite, //要寫入的數據的字節數
// 指向指向一個DWORD數值,該數值返回實際寫入的字節數
LPDWORD lpNumberOfBytesWritten,
// 重疊操作時,該參數指向一個OVERLAPPED結構,
// 同步操作時,該參數為NULL。
LPOVERLAPPED lpOverlapped
);
在用ReadFile和WriteFile讀寫串口時,既可以同步執行,也可以重疊執行。在同步執行時,函數直到操作完成後才返回。這意味著同步執行時線程會被阻塞,從而導致效率下降。在重疊執行時,即使操作還未完成,這兩個函數也會立即返回,費時的I/O操作在後台進行。
ReadFile和WriteFile函數是同步還是異步由CreateFile函數決定,如果在調用CreateFile創建句柄時指定了FILE_FLAG_OVERLAPPED標志,那麼調用ReadFile和WriteFile對該句柄進行的操作就應該是重疊的;如果未指定重疊標志,則讀寫操作應該是同步的。ReadFile和WriteFile函數的同步或者異步應該和CreateFile函數相一致。
ReadFile函數只要在串口輸入緩沖區中讀入指定數量的字符,就算完成操作。而WriteFile函數不但要把指定數量的字符拷入到輸出緩沖區,而且要等這些字符從串行口送出去後才算完成操作。
如果操作成功,這兩個函數都返回TRUE。需要注意的是,當ReadFile和WriteFile返回FALSE時,不一定就是操作失敗,線程應該調用GetLastError函數分析返回的結果。例如,在重疊操作時如果操作還未完成函數就返回,那麼函數就返回FALSE,而且GetLastError函數返回ERROR_IO_PENDING。這說明重疊操作還未完成。
同步方式讀寫串口比較簡單,下面先例舉同步方式讀寫串口的代碼://同步讀串口
char str[100];
DWORD wCount;//讀取的字節數
BOOL bReadStat;
bReadStat=ReadFile(hCom,str,100,&wCount,NULL);
if(!bReadStat)
{
AfxMessageBox("讀串口失敗!");
return FALSE;
}
return TRUE;
//同步寫串口
char lpOutBuffer[100];
DWORD dwBytesWrite=100;
COMSTAT ComStat;
DWORD dwErrorFlags;
BOOL bWriteStat;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
if(!bWriteStat)
{
AfxMessageBox("寫串口失敗!");
}
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
在重疊操作時,操作還未完成函數就返回。
重疊I/O非常靈活,它也可以實現阻塞(例如我們可以設置一定要讀取到一個數據才能進行到下一步操作)。有兩種方法可以等待操作完成:一種方法是用象WaitForSingleObject這樣的等待函數來等待OVERLAPPED結構的hEvent成員;另一種方法是調用GetOverlappedResult函數等待,後面將演示說明。
下面我們先簡單說一下OVERLAPPED結構和GetOverlappedResult函數:
OVERLAPPED結構
OVERLAPPED結構包含了重疊I/O的一些信息,定義如下:typedef struct _OVERLAPPED { // o
DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;
} OVERLAPPED;
在使用ReadFile和WriteFile重疊操作時,線程需要創建OVERLAPPED結構以供這兩個函數使用。線程通過OVERLAPPED結構獲得當前的操作狀態,該結構最重要的成員是hEvent。hEvent是讀寫事件。當串口使用異步通訊時,函數返回時操作可能還沒有完成,程序可以通過檢查該事件得知是否讀寫完畢。
當調用ReadFile, WriteFile 函數的時候,該成員會自動被置為無信號狀態;當重疊操作完成後,該成員變量會自動被置為有信號狀態。GetOverlappedResult函數
BOOL GetOverlappedResult(
HANDLE hFile, // 串口的句柄
// 指向重疊操作開始時指定的OVERLAPPED結構
LPOVERLAPPED lpOverlapped,
// 指向一個32位變量,該變量的值返回實際讀寫操作傳輸的字節數。
LPDWORD lpNumberOfBytesTransferred,
// 該參數用於指定函數是否一直等到重疊操作結束。
// 如果該參數為TRUE,函數直到操作結束才返回。
// 如果該參數為FALSE,函數直接返回,這時如果操作沒有完成,
// 通過調用GetLastError()函數會返回ERROR_IO_INCOMPLETE。
BOOL bWait
);
該函數返回重疊操作的結果,用來判斷異步操作是否完成,它是通過判斷OVERLAPPED結構中的hEvent是否被置位來實現的。
異步讀串口的示例代碼:char lpInBuffer[1024];
DWORD dwBytesRead=1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);
ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus=ReadFile(hCom,lpInBuffer,
dwBytesRead,&dwBytesRead,&m_osRead);
if(!bReadStatus) //如果ReadFile函數返回FALSE
{
if(GetLastError()==ERROR_IO_PENDING)
//GetLastError()函數返回ERROR_IO_PENDING,表明串口正在進行讀操作
{
WaitForSingleObject(m_osRead.hEvent,2000);
//使用WaitForSingleObject函數等待,直到讀操作完成或延時已達到2秒鐘
//當串口讀操作進行完畢後,m_osRead的hEvent事件會變為有信號
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
}
return 0;
}
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
對以上代碼再作簡要說明:在使用ReadFile 函數進行讀操作前,應先使用ClearCommError函數清除錯誤。ClearCommError函數的原型如下:BOOL ClearCommError(
HANDLE hFile, // 串口句柄
LPDWORD lpErrors, // 指向接收錯誤碼的變量
LPCOMSTAT lpStat // 指向通訊狀態緩沖區
);
該函數獲得通信錯誤並報告串口的當前狀態,同時,該函數清除串口的錯誤標志以便繼續輸入、輸出操作。
參數lpStat指向一個COMSTAT結構,該結構返回串口狀態信息。 COMSTAT結構 COMSTAT結構包含串口的信息,結構定義如下:typedef struct _COMSTAT { // cst
DWORD fCtsHold : 1; // Tx waiting for CTS signal
DWORD fDsrHold : 1; // Tx waiting for DSR signal
DWORD fRlsdHold : 1; // Tx waiting for RLSD signal
DWORD fXoffHold : 1; // Tx waiting, XOFF char rec''d
DWORD fXoffSent : 1; // Tx waiting, XOFF char sent
DWORD fEof : 1; // EOF character sent
DWORD fTxim : 1; // character waiting for Tx
DWORD fReserved : 25; // reserved
DWORD cbInQue; // bytes in input buffer
DWORD cbOutQue; // bytes in output buffer
} COMSTAT, *LPCOMSTAT;
本文只用到了cbInQue成員變量,該成員變量的值代表輸入緩沖區的字節數。
最後用PurgeComm函數清空串口的輸入輸出緩沖區。
這段代碼用WaitForSingleObject函數來等待OVERLAPPED結構的hEvent成員,下面我們再演示一段調用GetOverlappedResult函數等待的異步讀串口示例代碼:
char lpInBuffer[1024];
DWORD dwBytesRead=1024;
BOOL bReadStatus;
DWORD dwErrorFlags;
COMSTAT ComStat;
OVERLAPPED m_osRead;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
if(!ComStat.cbInQue)
return 0;
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead,
&dwBytesRead,&m_osRead);
if(!bReadStatus) //如果ReadFile函數返回FALSE
{
if(GetLastError()==ERROR_IO_PENDING)
{
GetOverlappedResult(hCom,
&m_osRead,&dwBytesRead,TRUE);
// GetOverlappedResult函數的最後一個參數設為TRUE,
//函數會一直等待,直到讀操作完成或由於錯誤而返回。
return dwBytesRead;
}
return 0;
}
return dwBytesRead;
異步寫串口的示例代碼:char buffer[1024];
DWORD dwBytesWritten=1024;
DWORD dwErrorFlags;
COMSTAT ComStat;
OVERLAPPED m_osWrite;
BOOL bWriteStat;
bWriteStat=WriteFile(hCom,buffer,dwBytesWritten,
&dwBytesWritten,&m_OsWrite);
if(!bWriteStat)
{
if(GetLastError()==ERROR_IO_PENDING)
{
WaitForSingleObject(m_osWrite.hEvent,1000);
return dwBytesWritten;
}
return 0;
}
return dwBytesWritten;
(4)、關閉串口
利用API函數關閉串口非常簡單,只需使用CreateFile函數返回的句柄作為參數調用CloseHandle即可:
BOOL CloseHandle(
HANDLE hObject; //handle to object to close
);
串口編程的一個實例
為了讓您更好地理解串口編程,下面我們分別編寫兩個例程(見附帶的源碼部分),這兩個例程都實現了工控機與百特顯示儀表通過RS485接口進行的串口通信。其中第一個例程采用同步串口操作,第二個例程采用異步串口操作。
我們只介紹軟件部分,RS485接口接線方法不作介紹,感興趣的讀者可以查閱相關資料。
例程1
打開VC++6.0,新建基於對話框的工程RS485Comm,在主對話框窗口IDD_RS485COMM_DIALOG上添加兩個按鈕,ID分別為IDC_SEND和IDC_RECEIVE,標題分別為“發送”和“接收”;添加一個靜態文本框IDC_DISP,用於顯示串口接收到的內容。
在RS485CommDlg.cpp文件中添加全局變量:
HANDLE hCom; //全局變量,串口句柄
在RS485CommDlg.cpp文件中的OnInitDialog()函數添加如下代碼:
// TODO: Add extra initialization here
hCom=CreateFile("COM1",//COM1口
GENERIC_READ|GENERIC_WRITE, //允許讀和寫
0, //獨占方式
NULL,
OPEN_EXISTING, //打開而不是創建
0, //同步方式
NULL);
if(hCom==(HANDLE)-1)
{
AfxMessageBox("打開COM失敗!");
return FALSE;
}
SetupComm(hCom,100,100); //輸入緩沖區和輸出緩沖區的大小都是1024
COMMTIMEOUTS TimeOuts;
//設定讀超時
TimeOuts.ReadIntervalTimeout=MAXDWORD;
TimeOuts.ReadTotalTimeoutMultiplier=0;
TimeOuts.ReadTotalTimeoutConstant=0;
//在讀一次輸入緩沖區的內容後讀操作就立即返回,
//而不管是否讀入了要求的字符。
//設定寫超時
TimeOuts.WriteTotalTimeoutMultiplier=100;
TimeOuts.WriteTotalTimeoutConstant=500;
SetCommTimeouts(hCom,&TimeOuts); //設置超時
DCB dcb;
GetCommState(hCom,&dcb);
dcb.BaudRate=9600; //波特率為9600
dcb.ByteSize=8; //每個字節有8位
dcb.Parity=NOPARITY; //無奇偶校驗位
dcb.StopBits=TWOSTOPBITS; //兩個停止位
SetCommState(hCom,&dcb);
PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);
分別雙擊IDC_SEND按鈕和IDC_RECEIVE按鈕,添加兩個按鈕的響應函數:
void CRS485CommDlg::OnSend() { // TODO: Add your control notification handler code here // 在此需要簡單介紹百特公司XMA5000的通訊協議: //該儀表RS485通訊采用主機廣播方式通訊。 //串行半雙工,幀11位,1個起始位(0),8個數據位,2個停止位(1) //如:讀儀表顯示的瞬時值,主機發送:DC1 AAA BB ETX //其中:DC1是標准ASCII碼的一個控制符號,碼值為11H(十進制的17) //在XMA5000的通訊協議中,DC1表示讀瞬時值 //AAA是從機地址碼,也就是XMA5000顯示儀表的通訊地址 //BB為通道號,讀瞬時值時該值為01 //ETX也是標准ASCII碼的一個控制符號,碼值為03H //在XMA5000的通訊協議中,ETX表示主機結束符 char lpOutBuffer[7]; memset(lpOutBuffer,''\0'',7); //前7個字節先清零 lpOutBuffer[0]=''\x11''; //發送緩沖區的第1個字節為DC1 lpOutBuffer[1]=''0''; //第2個字節為字符0(30H) lpOutBuffer[2]=''0''; //第3個字節為字符0(30H) lpOutBuffer[3]=''1''; // 第4個字節為字符1(31H) lpOutBuffer[4]=''0''; //第5個字節為字符0(30H) lpOutBuffer[5]=''1''; //第6個字節為字符1(31H) lpOutBuffer[6]=''\x03''; //第7個字節為字符ETX //從該段代碼可以看出,儀表的通訊地址為001 DWORD dwBytesWrite=7; COMSTAT ComStat; DWORD dwErrorFlags; BOOL bWriteStat; ClearCommError(hCom,&dwErrorFlags,&ComStat); bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL); if(!bWriteStat) { AfxMessageBox("寫串口失敗!"); } } void CRS485CommDlg::OnReceive() { // TODO: Add your control notification handler code here char str[100]; memset(str,''\0'',100); DWORD wCount=100;//讀取的字節數 BOOL bReadStat; bReadStat=ReadFile(hCom,str,wCount,&wCount,NULL); if(!bReadStat) AfxMessageBox("讀串口失敗!"); PurgeComm(hCom, PURGE_TXABORT| PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR); m_disp=str; UpdateData(FALSE); }
您可以觀察返回的字符串,其中有和儀表顯示值相同的部分,您可以進行相應的字符串操作取出儀表的顯示值。
打開ClassWizard,為靜態文本框IDC_DISP添加CString類型變量m_disp,同時添加WM_CLOSE的相應函數:
void CRS485CommDlg::OnClose()
{
// TODO: Add your message handler code here and/or call default
CloseHandle(hCom); //程序退出時關閉串口
CDialog::OnClose();
}
程序的相應部分已經在代碼內部作了詳細介紹。連接好硬件部分,編譯運行程序,細心體會串口同步操作部分。
例程2
打開VC++6.0,新建基於對話框的工程RS485Comm,在主對話框窗口IDD_RS485COMM_DIALOG上添加兩個按鈕,ID分別為IDC_SEND和IDC_RECEIVE,標題分別為“發送”和“接收”;添加一個靜態文本框IDC_DISP,用於顯示串口接收到的內容。在RS485CommDlg.cpp文件中添加全局變量:
HANDLE hCom; //全局變量,
串口句柄在RS485CommDlg.cpp文件中的OnInitDialog()函數添加如下代碼:
hCom=CreateFile("COM1",//COM1口
GENERIC_READ|GENERIC_WRITE, //允許讀和寫
0, //獨占方式
NULL,
OPEN_EXISTING, //打開而不是創建
FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重疊方式
NULL);
if(hCom==(HANDLE)-1)
{
AfxMessageBox("打開COM失敗!");
return FALSE;
}
SetupComm(hCom,100,100); //輸入緩沖區和輸出緩沖區的大小都是100
COMMTIMEOUTS TimeOuts;
//設定讀超時
TimeOuts.ReadIntervalTimeout=MAXDWORD;
TimeOuts.ReadTotalTimeoutMultiplier=0;
TimeOuts.ReadTotalTimeoutConstant=0;
//在讀一次輸入緩沖區的內容後讀操作就立即返回,
//而不管是否讀入了要求的字符。
//設定寫超時
TimeOuts.WriteTotalTimeoutMultiplier=100;
TimeOuts.WriteTotalTimeoutConstant=500;
SetCommTimeouts(hCom,&TimeOuts); //設置超時
DCB dcb;
GetCommState(hCom,&dcb);
dcb.BaudRate=9600; //波特率為9600
dcb.ByteSize=8; //每個字節有8位
dcb.Parity=NOPARITY; //無奇偶校驗位
dcb.StopBits=TWOSTOPBITS; //兩個停止位
SetCommState(hCom,&dcb);
PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);
分別雙擊IDC_SEND按鈕和IDC_RECEIVE按鈕,添加兩個按鈕的響應函數:
void CRS485CommDlg::OnSend() { // TODO: Add your control notification handler code here OVERLAPPED m_osWrite; memset(&m_osWrite,0,sizeof(OVERLAPPED)); m_osWrite.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL); char lpOutBuffer[7]; memset(lpOutBuffer,''\0'',7); lpOutBuffer[0]=''\x11''; lpOutBuffer[1]=''0''; lpOutBuffer[2]=''0''; lpOutBuffer[3]=''1''; lpOutBuffer[4]=''0''; lpOutBuffer[5]=''1''; lpOutBuffer[6]=''\x03''; DWORD dwBytesWrite=7; COMSTAT ComStat; DWORD dwErrorFlags; BOOL bWriteStat; ClearCommError(hCom,&dwErrorFlags,&ComStat); bWriteStat=WriteFile(hCom,lpOutBuffer, dwBytesWrite,& dwBytesWrite,&m_osWrite); if(!bWriteStat) { if(GetLastError()==ERROR_IO_PENDING) { WaitForSingleObject(m_osWrite.hEvent,1000); } } } void CRS485CommDlg::OnReceive() { // TODO: Add your control notification handler code here OVERLAPPED m_osRead; memset(&m_osRead,0,sizeof(OVERLAPPED)); m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL); COMSTAT ComStat; DWORD dwErrorFlags; char str[100]; memset(str,''\0'',100); DWORD dwBytesRead=100;//讀取的字節數 BOOL bReadStat; ClearCommError(hCom,&dwErrorFlags,&ComStat); dwBytesRead=min(dwBytesRead, (DWORD)ComStat.cbInQue); bReadStat=ReadFile(hCom,str, dwBytesRead,&dwBytesRead,&m_osRead); if(!bReadStat) { if(GetLastError()==ERROR_IO_PENDING) //GetLastError()函數返回ERROR_IO_PENDING,表明串口正在進行讀操作 { WaitForSingleObject(m_osRead.hEvent,2000); //使用WaitForSingleObject函數等待,直到讀操作完成或延時已達到2秒鐘 //當串口讀操作進行完畢後,m_osRead的hEvent事件會變為有信號 } } PurgeComm(hCom, PURGE_TXABORT| PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR); m_disp=str; UpdateData(FALSE); }
打開ClassWizard,為靜態文本框IDC_DISP添加CString類型變量m_disp,同時添加WM_CLOSE的相應函數:void CRS485CommDlg::OnClose()
{
// TODO: Add your message handler code here and/or call default
CloseHandle(hCom); //程序退出時關閉串口
CDialog::OnClose();
}
您可以仔細對照這兩個例程,細心體會串口同步操作和異步操作的區別。
好了,就到這吧,祝您好運。
本文配套源碼