LZW緊縮算法 C#源碼。本站提示廣大學習愛好者:(LZW緊縮算法 C#源碼)文章只能為提供參考,不一定能成為您想要的結果。以下是LZW緊縮算法 C#源碼正文
using System; using System.IO; namespace Gif.Components { public class LZWEncoder { private static readonly int EOF = -1; private int imgW, imgH; private byte[] pixAry; private int initCodeSize; private int remaining; private int curPixel; // GIFCOMPR.C - GIF Image compression routines // // Lempel-Ziv compression based on 'compress'. GIF modifications by // David Rowley ([email protected]) // General DEFINEs static readonly int BITS = 12; static readonly int HSIZE = 5003; // 80% occupancy // GIF Image compression - modified 'compress' // // Based on: compress.c - File compression ala IEEE Computer, June 1984. // // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) // Jim McKie (decvax!mcvax!jim) // Steve Davies (decvax!vax135!petsd!peora!srd) // Ken Turkowski (decvax!decwrl!turtlevax!ken) // James A. Woods (decvax!ihnp4!ames!jaw) // Joe Orost (decvax!vax135!petsd!joe) int n_bits; // number of bits/code int maxbits = BITS; // user settable max # bits/code int maxcode; // maximum code, given n_bits int maxmaxcode = 1 << BITS; // should NEVER generate this code int[] htab = new int[HSIZE];//這個是放hash的筒子,在這外面可以很快的找到1個key int[] codetab = new int[HSIZE]; int hsize = HSIZE; // for dynamic table sizing int free_ent = 0; // first unused entry // block compression parameters -- after all codes are used up, // and compression rate changes, start over. bool clear_flg = false; // Algorithm: use open addressing double hashing (no chaining) on the // prefix code / next character combination. We do a variant of Knuth's // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime // secondary probe. Here, the modular division first probe is gives way // to a faster exclusive-or manipulation. Also do block compression with // an adaptive reset, whereby the code table is cleared when the compression // ratio decreases, but after the table fills. The variable-length output // codes are re-sized at this point, and a special CLEAR code is generated // for the decompressor. Late addition: construct the table according to // file size for noticeable speed improvement on small files. Please direct // questions about this implementation to ames!jaw. int g_init_bits; int ClearCode; int EOFCode; // output // // Output the given code. // Inputs: // code: A n_bits-bit integer. If == -1, then EOF. This assumes // that n_bits =< wordsize - 1. // Outputs: // Outputs code to the file. // Assumptions: // Chars are 8 bits long. // Algorithm: // Maintain a BITS character long buffer (so that 8 codes will // fit in it exactly). Use the VAX insv instruction to insert each // code in turn. When the buffer fills up empty it and start over. int cur_accum = 0; int cur_bits = 0; int [] masks = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; // Number of characters so far in this 'packet' int a_count; // Define the storage for the packet accumulator byte[] accum = new byte[256]; //---------------------------------------------------------------------------- public LZWEncoder(int width, int height, byte[] pixels, int color_depth) { imgW = width; imgH = height; pixAry = pixels; initCodeSize = Math.Max(2, color_depth); } // Add a character to the end of the current packet, and if it is 254 // characters, flush the packet to disk. void Add(byte c, Stream outs) { accum[a_count++] = c; if (a_count >= 254) Flush(outs); } // Clear out the hash table // table clear for block compress void ClearTable(Stream outs) { ResetCodeTable(hsize); free_ent = ClearCode + 2; clear_flg = true; Output(ClearCode, outs); } // reset code table // 全體初始化為-1 void ResetCodeTable(int hsize) { for (int i = 0; i < hsize; ++i) htab[i] = -1; } void Compress(int init_bits, Stream outs) { int fcode; int i /* = 0 */; int c; int ent; int disp; int hsize_reg; int hshift; // Set up the globals: g_init_bits - initial number of bits //原始數據的字長,在gif文件中,原始數據的字長可認為1(單色圖),4(16色),和8(256色) //開端的時刻先加上1 //然則當原始數據長度為1的時刻,開端為3 //是以原始長度1->3,4->5,8->9 //?為什麼原始數據字長為1的時刻,開端長度為3呢?? //假如+1=2,只能表現四種狀況,加上clearcode和endcode就用完了。所以必需擴大到3 g_init_bits = init_bits; // Set up the necessary values //能否須要加消除標記 //GIF為了進步緊縮率,采取的是變長的字長(VCL)。好比說原始數據是8位,那末開端先加上1位(8+1=9) //當標號到2^9=512的時刻,跨越了以後長度9所能表示的最年夜值,此時前面的標號就必需用10位來表現 //以此類推,當標號到2^12的時刻,由於最年夜為12,不克不及持續擴大了,須要在2^12=4096的地位上拔出一個ClearCode,表現從這往後,從9位從新再來了 clear_flg = false; n_bits = g_init_bits; //取得n位數能表述的最年夜值(gif圖象中開端普通為3,5,9,故maxcode普通為7,31,511) maxcode = MaxCode(n_bits); //表現從這裡我從新開端結構字典字典了,之前的一切標志作廢, //開端應用新的標志。這個標號集的年夜小若干比擬適合呢?聽說實際上是越年夜緊縮率越高(我小我感到太年夜了也不見得就好), //不外處置的開支也呈指數增加 //gif劃定,clearcode的值為原始數據最年夜字長所能表達的數值+1;好比原始數據長度為8,則clearcode=1<<(9-1)=256 ClearCode = 1 << (init_bits - 1); //停止標記為clearcode+1 EOFCode = ClearCode + 1; //這個是消除停止的 free_ent = ClearCode + 2; //清晰數目 a_count = 0; // clear packet //從圖象中取得下一個像素 ent = NextPixel(); hshift = 0; for (fcode = hsize; fcode < 65536; fcode *= 2) ++hshift; //設置hash碼規模 hshift = 8 - hshift; // set hash code range bound hsize_reg = hsize; //消除固定年夜小的hash表,用於存儲標志,這個相當於字典 ResetCodeTable(hsize_reg); // clear hash table Output(ClearCode, outs); outer_loop : while ((c = NextPixel()) != EOF) { fcode = (c << maxbits) + ent; i = (c << hshift) ^ ent; // xor hashing //嘿嘿,小樣,又來了,我熟悉你 if (htab[i] == fcode) { ent = codetab[i]; continue; } //這小子,新來的 else if (htab[i] >= 0) // non-empty slot { disp = hsize_reg - i; // secondary hash (after G. Knott) if (i == 0) disp = 1; do { if ((i -= disp) < 0) i += hsize_reg; if (htab[i] == fcode) { ent = codetab[i]; goto outer_loop; } } while (htab[i] >= 0); } Output(ent, outs); //從這裡可以看出,ent就是前綴(prefix),而以後正在處置的字符標記就是後綴(suffix) ent = c; //斷定終止停止符能否跨越以後位數所能表述的規模 if (free_ent < maxmaxcode) { //假如沒有超 codetab[i] = free_ent++; // code -> hashtable //hash內外面樹立響應索引 htab[i] = fcode; } else //解釋跨越了以後所能表述的規模,清空字典,從新再來 ClearTable(outs); } // Put out the final code. Output(ent, outs); Output(EOFCode, outs); } //---------------------------------------------------------------------------- public void Encode( Stream os) { os.WriteByte( Convert.ToByte( initCodeSize) ); // write "initial code size" byte //這個圖象包括若干個像素 remaining = imgW * imgH; // reset navigation variables //以後處置的像素索引 curPixel = 0; Compress(initCodeSize + 1, os); // compress and write the pixel data os.WriteByte(0); // write block terminator } // Flush the packet to disk, and reset the accumulator void Flush(Stream outs) { if (a_count > 0) { outs.WriteByte( Convert.ToByte( a_count )); outs.Write(accum, 0, a_count); a_count = 0; } } /// <summary> /// 取得n位數所能表達的最年夜數值 /// </summary> /// <param name="n_bits">位數,普通情形下n_bits = 9</param> /// <returns>最年夜值,例如n_bits=8,則前往值就為2^8-1=255</returns> int MaxCode(int n_bits) { return (1 << n_bits) - 1; } //---------------------------------------------------------------------------- // Return the next pixel from the image //---------------------------------------------------------------------------- /// <summary> /// 從圖象中取得下一個像素 /// </summary> /// <returns></returns> private int NextPixel() { //還剩若干個像素沒有處置 //假如沒有了,前往停止標記 if (remaining == 0) return EOF; //不然處置下一個,並將未處置像素數量-1 --remaining; //以後處置的像素 int temp = curPixel + 1; //假如以後處置像素在像素規模以內 if ( temp < pixAry.GetUpperBound( 0 )) { //下一個像素 byte pix = pixAry[curPixel++]; return pix & 0xff; } return 0xff; } /// <summary> /// 輸入字到輸入流 /// </summary> /// <param name="code">要輸入的字</param> /// <param name="outs">輸入流</param> void Output(int code, Stream outs) { //獲得以後標記位所能表現的最年夜標記值 cur_accum &= masks[cur_bits]; if (cur_bits > 0) cur_accum |= (code << cur_bits); else //假如標記位為0,就將以後標號為輸出流 cur_accum = code; //以後能標記的最年夜字長度(9-10-11-12-9-10。。。。。。。) cur_bits += n_bits; //假如以後最年夜長度年夜於8 while (cur_bits >= 8) { //向流中輸入一個字節 Add((byte) (cur_accum & 0xff), outs); //將以後標號右移8位 cur_accum >>= 8; cur_bits -= 8; } // If the next entry is going to be too big for the code size, // then increase it, if possible. if (free_ent > maxcode || clear_flg) { if (clear_flg) { maxcode = MaxCode(n_bits = g_init_bits); clear_flg = false; } else { ++n_bits; if (n_bits == maxbits) maxcode = maxmaxcode; else maxcode = MaxCode(n_bits); } } if (code == EOFCode) { // At EOF, write the rest of the buffer. while (cur_bits > 0) { Add((byte) (cur_accum & 0xff), outs); cur_accum >>= 8; cur_bits -= 8; } Flush(outs); } } } }
以上就是本文的全體內容,願望能給年夜家一個參考,也願望年夜家多多支撐。