程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> 更多編程語言 >> 編程解疑 >> components-How Many Free Dimensions?

components-How Many Free Dimensions?

編輯:編程解疑
How Many Free Dimensions?

Description

In calculating the outer product of vectors, existence of constraints usually makes it that not all the components of the product are independent of the others. For example, the outer product of two two-dimensional vectors A = (a1, a2) and B = (b1, b2), C = A × B = (c11, c12, c21, c22). If we set c12 = c21, then only three of the four components of C is independent, or C has three free dimensions.

Now we have k n-dimensional vectors A1, A2, …, Ak. The product of them is a vector of nk components Z = (zα) where α enumerates all possible subscripts i1i2…ik (1 ≤ ij ≤ n for all j s.t. 1 ≤ j ≤ k). We can then apply a rule of constraint of the form s1s2…sk=t1t2…tk to the subscripts. Here s1s2…sk and t1t2…tk are two strings consisting of the same set of lowercase letters. A letter appearing in one string will also appear in the other one and it can have multiple occurrences in a string. When a rule is applied, the letters in it are replaced by arbitrary integers between 1 and n (inclusive) provided that the same letters are replaced by the same integers and different letters are replaced by different integers. If a resulted string after replacements is p1p2…pk=q1q2…qk, let α be p1p2…pk and β be q1q2…qk, then we set zα = zβ. Given the number of vectors and their dimensions and a rule of constraint, you are required to compute the number of free dimensions of the product of the vectors.

Input

The input contains several test cases. Each test case consists of two lines followed by a blank one. On the first line there are two integers which are n and k in the order they appear. On the second line is a rule of constraint. Two zeroes on a separate line follow the last test case.

Output

For each test case, output one line containing the number of free dimensions of the product of vectors.

Sample Input

2 2
ij=ji

3 3
iij=jii

0 0
Sample Output

3
21

最佳回答:


https://www.nowcoder.com/questionTerminal/a51f622af10c4264943c5eae26d4d00c

  1. 上一頁:
  2. 下一頁:
Copyright © 程式師世界 All Rights Reserved