程序師世界是廣大編程愛好者互助、分享、學習的平台,程序師世界有你更精彩!
首頁
編程語言
C語言|JAVA編程
Python編程
網頁編程
ASP編程|PHP編程
JSP編程
數據庫知識
MYSQL數據庫|SqlServer數據庫
Oracle數據庫|DB2數據庫
 程式師世界 >> 編程語言 >> 更多編程語言 >> 更多關於編程 >> POJ 1915 Knight Moves 雙向BFS 入門

POJ 1915 Knight Moves 雙向BFS 入門

編輯:更多關於編程

     Description

    Background
    Mr Somurolov, fabulous chess-gamer indeed, asserts that no one else but him can move knights from one position to another so fast. Can you beat him?
    The Problem
    Your task is to write a program to calculate the minimum number of moves needed for a knight to reach one point from another, so that you have the chance to be faster than Somurolov.
    For people not familiar with chess, the possible knight moves are shown in Figure 1.
    POJ 1915 Knight Moves 雙向BFS 入門 三聯

    Input

    The input begins with the number n of scenarios on a single line by itself.
    Next follow n scenarios. Each scenario consists of three lines containing integer numbers. The first line specifies the length l of a side of the chess board (4 <= l <= 300). The entire board has size l * l. The second and third line contain pair of integers {0, ..., l-1}*{0, ..., l-1} specifying the starting and ending position of the knight on the board. The integers are separated by a single blank. You can assume that the positions are valid positions on the chess board of that scenario.

    Output

    For each scenario of the input you have to calculate the minimal amount of knight moves which are necessary to move from the starting point to the ending point. If starting point and ending point are equal,distance is zero. The distance must be written on a single line.

    Sample Input

    1 2 3 4 5 6 7 8 9 10 3 8 0 0 7 0 100 0 0 30 50 10 1 1 1 1

    Sample Output

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 5 28 0 <strong>題意:給一個N*N的棋盤,並給出起點終點的x y坐標 球起點到終點的最小步數。</strong> 雙向BFS代碼: <pre class="brush:java;">#include<iostream> #include<cstdio> #include<queue> #include<cstring> #define qq 330 using namespace std; int vis1[qq][qq];      //既標記路徑 也統計步數 int vis2[qq][qq]; int fx1[8]={2,2,-2,-2,1,1,-1,-1}; int fx2[8]={1,-1,1,-1,2,-2,2,-2}; struct node {  int x,y; }start,end;               //雙向BFS的兩端起點      int sx,sy,ex,ey; int m; bool inside(int xx,int yy)           //判斷越界 {     if(xx>=0&&yy>=0&&xx<m&&yy<m) return="" true;="" else="" false;="" }="" void="" dbfs()="" {="" int="" i,tq,tw;="" queue<node="">q,w;            //兩個隊列     start.x=sx;start.y=sy;     end.x=ex;end.y=ey;     q.push(start);     w.push(end);                  vis1[sx][sy]=0;         //後面的步數是從0開始加的     vis2[ex][ey]=0;     while(!q.empty()&&!w.empty())     {         node now,next;         tq=q.size();      //為了先將一個隊列的全部判斷完         while(tq--)         {           now=q.front();           q.pop();           if(inside(now.x,now.y)&&vis2[now.x][now.y]!=-1)    //兩端開始的都經過這一點。。           {               printf("%dn",vis1[now.x][now.y]+vis2[now.x][now.y]);               return;           }           for(i=0;i<8;i++)           {               next.x=now.x+fx1[i];               next.y=now.y+fx2[i];               if(inside(next.x,next.y)&&vis2[next.x][next.y]!=-1)    //重要,,因為奇數步時。。。               {                   printf("%dn",vis1[now.x][now.y]+1+vis2[next.x][next.y]);                   return;               }               if(inside(next.x,next.y)&&vis1[next.x][next.y]==-1)               {                   vis1[next.x][next.y]=vis1[now.x][now.y]+1;                   q.push(next);               }           }         }         tw=w.size();         while(tw--)        //同上         {           now=w.front();           w.pop();           if(inside(now.x,now.y)&&vis1[now.x][now.y]!=-1)           {               printf("%dn",vis1[now.x][now.y]+vis2[now.x][now.y]);               return;           }           for(i=0;i<8;i++)           {               next.x=now.x+fx1[i];               next.y=now.y+fx2[i];               if(inside(next.x,next.y)&&vis1[next.x][next.y]!=-1)               {                   printf("%dn",vis2[now.x][now.y]+1+vis1[next.x][next.y]);                   return;               }               if(inside(next.x,next.y)&&vis2[next.x][next.y]==-1)               {                   vis2[next.x][next.y]=vis2[now.x][now.y]+1;                   w.push(next);               }           }         }     } } int main() {     int t;     scanf("%d",&t);     while(t--)     {         scanf("%d",&m);         scanf("%d%d%d%d",&sx,&sy,&ex,&ey);         memset(vis1,-1,sizeof(vis1));      //標記為未走過         memset(vis2,-1,sizeof(vis2));         dbfs();     }         return 0; } </m&&yy<m)></cstring></queue></cstdio></iostream></pre><br>雙向BFS的精髓在於從起點終點同時開始搜索 當找到一點同時兩端都經過時 即找到最短路徑。。<br><br>
     

    1. 上一頁:
    2. 下一頁:
    Copyright © 程式師世界 All Rights Reserved