代碼優化能夠讓程序運行更快,它是在不改變程序運行結果的情況下使得程序的運行效率更高,根據 80/20 原則,實現程序的重構、優化、擴展以及文檔相關的事情通常需要消耗 80% 的工作量。優化通常包含兩方面的內容:減小代碼的體積,提高代碼的運行效率。
一個良好的算法能夠對性能起到關鍵作用,因此性能改進的首要點是對算法的改進。在算法的時間復雜度排序上依次是:
O(1) -> O(lg n) -> O(n lg n) -> O(n^2) -> O(n^3) -> O(n^k) -> O(k^n) -> O(n!)
因此如果能夠在時間復雜度上對算法進行一定的改進,對性能的提高不言而喻。但對具體算法的改進不屬於本文討論的范圍,讀者可以自行參考這方面資料。下面的內容將集中討論數據結構的選擇。
Python 字典中使用了 hash table,因此查找操作的復雜度為 O(1),而 list 實際是個數組,在 list 中,查找需要遍歷整個 list,其復雜度為 O(n),因此對成員的查找訪問等操作字典要比 list 更快。
from time import time t = time() list = ['a','b','is','python','jason','hello','hill','with','phone','test', 'dfdf','apple','pddf','ind','basic','none','baecr','var','bana','dd','wrd'] #list = dict.fromkeys(list,True) print list filter = [] for i in range (1000000): for find in ['is','hat','new','list','old','.']: if find not in list: filter.append(find) print "total run time:" print time()-t
上述代碼運行大概需要 16.09seconds。如果去掉行 #list = dict.fromkeys(list,True) 的注釋,將 list 轉換為字典之後再運行,時間大約為 8.375 seconds,效率大概提高了一半。因此在需要多數據成員進行頻繁的查找或者訪問的時候,使用 dict 而不是 list 是一個較好的選擇。
set 的 union, intersection,difference 操作要比 list 的迭代要快。因此如果涉及到求 list 交集,並集或者差的問題可以轉換為 set 來操作。
from time import time t = time() lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44] listb=[2,4,6,9,23] intersection=[] for i in range (1000000): for a in lista: for b in listb: if a == b: intersection.append(a) print "total run time:" print time()-t
上述程序的運行時間大概為:
total run time: 38.4070000648
from time import time t = time() lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44] listb=[2,4,6,9,23] intersection=[] for i in range (1000000): list(set(lista)&set(listb)) print "total run time:" print time()-t
改為 set 後程序的運行時間縮減為 8.75,提高了 4 倍多,運行時間大大縮短。讀者可以自行使用表 1 其他的操作進行測試。
語法
操作
說明
set(list1) | set(list2)
union
包含 list1 和 list2 所有數據的新集合
set(list1) & set(list2)
intersection
包含 list1 和 list2 中共同元素的新集合
set(list1) – set(list2)
difference
在 list1 中出現但不在 list2 中出現的元素的集合
對循環的優化所遵循的原則是盡量減少循環過程中的計算量,有多重循環的盡量將內層的計算提到上一層。 下面通過實例來對比循環優化後所帶來的性能的提高。程序清單 4 中,如果不進行循環優化,其大概的運行時間約為 132.375。
from time import time t = time() lista = [1,2,3,4,5,6,7,8,9,10] listb =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.01] for i in range (1000000): for a in range(len(lista)): for b in range(len(listb)): x=lista[a]+listb[b] print "total run time:" print time()-t
現在進行如下優化,將長度計算提到循環外,range 用 xrange 代替,同時將第三層的計算 lista[a] 提到循環的第二層。
from time import time t = time() lista = [1,2,3,4,5,6,7,8,9,10] listb =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.01] len1=len(lista) len2=len(listb) for i in xrange (1000000): for a in xrange(len1): temp=lista[a] for b in xrange(len2): x=temp+listb[b] print "total run time:" print time()-t
上述優化後的程序其運行時間縮短為 102.171999931。在清單 4 中 lista[a] 被計算的次數為 1000000*10*10,而在優化後的代碼中被計算的次數為 1000000*10,計算次數大幅度縮短,因此性能有所提升。
python 中條件表達式是 lazy evaluation 的,也就是說如果存在條件表達式 if x and y,在 x 為 false 的情況下 y 表達式的值將不再計算。因此可以利用該特性在一定程度上提高程序效率。
from time import time t = time() abbreviations = ['cf.', 'e.g.', 'ex.', 'etc.', 'fig.', 'i.e.', 'Mr.', 'vs.'] for i in range (1000000): for w in ('Mr.', 'Hat', 'is', 'chasing', 'the', 'black', 'cat', '.'): if w in abbreviations: #if w[-1] == '.' and w in abbreviations: pass print "total run time:" print time()-t
在未進行優化之前程序的運行時間大概為 8.84,如果使用注釋行代替第一個 if,運行的時間大概為 6.17。
python 中的字符串對象是不可改變的,因此對任何字符串的操作如拼接,修改等都將產生一個新的字符串對象,而不是基於原字符串,因此這種持續的 copy 會在一定程度上影響 python 的性能。對字符串的優化也是改善性能的一個重要的方面,特別是在處理文本較多的情況下。字符串的優化主要集中在以下幾個方面:
from time import time t = time() s = "" list = ['a','b','b','d','e','f','g','h','i','j','k','l','m','n'] for i in range (10000): for substr in list: s+= substr print "total run time:" print time()-t
同時要避免:
s = "" for x in list: s += func(x)
而是要使用:
slist = [func(elt) for elt in somelist] s = "".join(slist)
out = "<html>%s%s%s%s</html>" % (head, prologue, query, tail)
而避免
out = "<html>" + head + prologue + query + tail + "</html>"
列表解析要比在循環中重新構建一個新的 list 更為高效,因此我們可以利用這一特性來提高運行的效率。
from time import time t = time() list = ['a','b','is','python','jason','hello','hill','with','phone','test', 'dfdf','apple','pddf','ind','basic','none','baecr','var','bana','dd','wrd'] total=[] for i in range (1000000): for w in list: total.append(w) print "total run time:" print time()-t
使用列表解析:
for i in range (1000000): a = [w for w in list]
上述代碼直接運行大概需要 17s,而改為使用列表解析後 ,運行時間縮短為 9.29s。將近提高了一半。生成器表達式則是在 2.4 中引入的新內容,語法和列表解析類似,但是在大數據量處理時,生成器表達式的優勢較為明顯,它並不創建一個列表,只是返回一個生成器,因此效率較高。在上述例子上中代碼 a = [w for w in list] 修改為 a = (w for w in list),運行時間進一步減少,縮短約為 2.98s。
>>> from timeit import Timer >>> Timer("t=a;a=b;b=t","a=1;b=2").timeit() 0.25154118749729365 >>> Timer("a,b=b,a","a=1;b=2").timeit() 0.17156677734181258 >>>
回頁首
對代碼優化的前提是需要了解性能瓶頸在什麼地方,程序運行的主要時間是消耗在哪裡,對於比較復雜的代碼可以借助一些工具來定位,python 內置了豐富的性能分析工具,如 profile,cProfile 與 hotshot 等。其中 Profiler 是 python 自帶的一組程序,能夠描述程序運行時候的性能,並提供各種統計幫助用戶定位程序的性能瓶頸。Python 標准模塊提供三種 profilers:cProfile,profile 以及 hotshot。
profile 的使用非常簡單,只需要在使用之前進行 import 即可。具體實例如下:
import profile def profileTest(): Total =1; for i in range(10): Total=Total*(i+1) print Total return Total if __name__ == "__main__": profile.run("profileTest()")
程序的運行結果如下:
其中輸出每列的具體解釋如下:
如果需要將輸出以日志的形式保存,只需要在調用的時候加入另外一個參數。如 profile.run(“profileTest()”,”testprof”)。
對於 profile 的剖析數據,如果以二進制文件的時候保存結果的時候,可以通過 pstats 模塊進行文本報表分析,它支持多種形式的報表輸出,是文本界面下一個較為實用的工具。使用非常簡單:
import pstats p = pstats.Stats('testprof') p.sort_stats("name").print_stats()
其中 sort_stats() 方法能夠對剖分數據進行排序, 可以接受多個排序字段,如 sort_stats(‘name’, ‘file’) 將首先按照函數名稱進行排序,然後再按照文件名進行排序。常見的排序字段有 calls( 被調用的次數 ),time(函數內部運行時間),cumulative(運行的總時間)等。此外 pstats 也提供了命令行交互工具,執行 python – m pstats 後可以通過 help 了解更多使用方式。
對於大型應用程序,如果能夠將性能分析的結果以圖形的方式呈現,將會非常實用和直觀,常見的可視化工具有 Gprof2Dot,visualpytune,KCacheGrind 等,讀者可以自行查閱相關官網,本文不做詳細討論。
回頁首
Python 性能優化除了改進算法,選用合適的數據結構之外,還有幾種關鍵的技術,比如將關鍵 python 代碼部分重寫成 C 擴展模塊,或者選用在性能上更為優化的解釋器等,這些在本文中統稱為優化工具。python 有很多自帶的優化工具,如 Psyco,Pypy,Cython,Pyrex 等,這些優化工具各有千秋,本節選擇幾種進行介紹。
psyco 是一個 just-in-time 的編譯器,它能夠在不改變源代碼的情況下提高一定的性能,Psyco 將操作編譯成有點優化的機器碼,其操作分成三個不同的級別,有”運行時”、”編譯時”和”虛擬時”變量。並根據需要提高和降低變量的級別。運行時變量只是常規 Python 解釋器處理的原始字節碼和對象結構。一旦 Psyco 將操作編譯成機器碼,那麼編譯時變量就會在機器寄存器和可直接訪問的內存位置中表示。同時 python 能高速緩存已編譯的機器碼以備今後重用,這樣能節省一點時間。但 Psyco 也有其缺點,其本身運行所占內存較大。目前 psyco 已經不在 python2.7 中支持,而且不再提供維護和更新了,對其感興趣的可以參考 http://psyco.sourceforge.net/
PyPy 表示 “用 Python 實現的 Python”,但實際上它是使用一個稱為 RPython 的 Python 子集實現的,能夠將 Python 代碼轉成 C, .NET, Java 等語言和平台的代碼。PyPy 集成了一種即時 (JIT) 編譯器。和許多編譯器,解釋器不同,它不關心 Python 代碼的詞法分析和語法樹。 因為它是用 Python 語言寫的,所以它直接利用 Python 語言的 Code Object.。 Code Object 是 Python 字節碼的表示,也就是說, PyPy 直接分析 Python 代碼所對應的字節碼 ,,這些字節碼即不是以字符形式也不是以某種二進制格式保存在文件中, 而在 Python 運行環境中。目前版本是 1.8. 支持不同的平台安裝,windows 上安裝 Pypy 需要先下載 https://bitbucket.org/pypy/pypy/downloads/pypy-1.8-win32.zip,然後解壓到相關的目錄,並將解壓後的路徑添加到環境變量 path 中即可。在命令行運行 pypy,如果出現如下錯誤:”沒有找到 MSVCR100.dll, 因此這個應用程序未能啟動,重新安裝應用程序可能會修復此問題”,則還需要在微軟的官網上下載 VS 2010 runtime libraries 解決該問題。具體地址為 http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5555
安裝成功後在命令行裡運行 pypy,輸出結果如下:
C:\Documents and Settings\Administrator>pypy Python 2.7.2 (0e28b379d8b3, Feb 09 2012, 18:31:47) [PyPy 1.8.0 with MSC v.1500 32 bit] on win32 Type "help", "copyright", "credits" or "license" for more information. And now for something completely different: ``PyPy is vast, and contains multitudes'' >>>>
以清單 5 的循環為例子,使用 python 和 pypy 分別運行,得到的運行結果分別如下: