[email protected] MINGW64 /
$ ipython
Python 3.6.7 (default, Jul 2 2019, 02:21:41) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: import pandas as pd
In [2]: df = df = pd.DataFrame({
'house' : list('AABCEFG'),
...: 'price' : [100, 90, '', 50, 120, 150, 200],
...: 'toward' : ['1','1','2','3','','3','2']})
...:
In [3]: df = pd.DataFrame({
'house' : list('AABCEFG'),'price' : [100, 90, '', 50, 120, 150, 200],'toward' : ['1','1','2','3','',' ...: 3','2']})
In [4]: df
Out[4]:
house price toward
0 A 100 1
1 A 90 1
2 B 2
3 C 50 3
4 E 120
5 F 150 3
6 G 200 2
In [5]: for a in df.iteritems():
...: print(a)
...:
('house', 0 A
1 A
2 B
3 C
4 E
5 F
6 G
Name: house, dtype: object)
('price', 0 100
1 90
2
3 50
4 120
5 150
6 200
Name: price, dtype: object)
('toward', 0 1
1 1
2 2
3 3
4
5 3
6 2
Name: toward, dtype: object)
In [6]: for key, val in df.iteritems():
...: print(f'key: {key}, val: {val}')
...:
...:
key: house, val: 0 A
1 A
2 B
3 C
4 E
5 F
6 G
Name: house, dtype: object
key: price, val: 0 100
1 90
2
3 50
4 120
5 150
6 200
Name: price, dtype: object
key: toward, val: 0 1
1 1
2 2
3 3
4
5 3
6 2
Name: toward, dtype: object
In [8]: for key, val in df.iteritems():
...: print(f'key: {key}, val: {type(val)}')
...:
...:
key: house, val: <class 'pandas.core.series.Series'>
key: price, val: <class 'pandas.core.series.Series'>
key: toward, val: <class 'pandas.core.series.Series'>
2. df.iterrows()
In [9]: for c in df.iterrows():
...: print(c)
...:
(0, house A
price 100
toward 1
Name: 0, dtype: object)
(1, house A
price 90
toward 1
Name: 1, dtype: object)
(2, house B
price
toward 2
Name: 2, dtype: object)
(3, house C
price 50
toward 3
Name: 3, dtype: object)
(4, house E
price 120
toward
Name: 4, dtype: object)
(5, house F
price 150
toward 3
Name: 5, dtype: object)
(6, house G
price 200
toward 2
Name: 6, dtype: object)
In [10]: for key, val in df.iterrows():
...: print(f'key: {key}, val: {val}')
...:
key: 0, val: house A
price 100
toward 1
Name: 0, dtype: object
key: 1, val: house A
price 90
toward 1
Name: 1, dtype: object
key: 2, val: house B
price
toward 2
Name: 2, dtype: object
key: 3, val: house C
price 50
toward 3
Name: 3, dtype: object
key: 4, val: house E
price 120
toward
Name: 4, dtype: object
key: 5, val: house F
price 150
toward 3
Name: 5, dtype: object
key: 6, val: house G
price 200
toward 2
Name: 6, dtype: object
In [11]: for key, val in df.iterrows():
...: print(f'key: {key}, val: {type(val)}')
...:
...:
key: 0, val: <class 'pandas.core.series.Series'>
key: 1, val: <class 'pandas.core.series.Series'>
key: 2, val: <class 'pandas.core.series.Series'>
key: 3, val: <class 'pandas.core.series.Series'>
key: 4, val: <class 'pandas.core.series.Series'>
key: 5, val: <class 'pandas.core.series.Series'>
key: 6, val: <class 'pandas.core.series.Series'>
3. df.itertuples()
In [12]: for d in df.itertuples():
...: print(d)
...:
Pandas(Index=0, house='A', price=100, toward='1')
Pandas(Index=1, house='A', price=90, toward='1')
Pandas(Index=2, house='B', price='', toward='2')
Pandas(Index=3, house='C', price=50, toward='3')
Pandas(Index=4, house='E', price=120, toward='')
Pandas(Index=5, house='F', price=150, toward='3')
Pandas(Index=6, house='G', price=200, toward='2')
4. 直接迭代
In [15]:for e in df:
...: print(e)
...:
house
price
toward
5. columns, index, values迭代
In [16]: for f in df.columns:
...: print(f)
...:
house
price
toward
In [17]: for g in df.indexs:
...: print(g)
...:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-20-7459c53beff9> in <module>
----> 1 for g in df.indexs:
2 print(g)
3
D:\Anaconda3\envs\py36\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
5177 if self._info_axis._can_hold_identifiers_and_holds_name(name):
5178 return self[name]
-> 5179 return object.__getattribute__(self, name)
5180
5181 def __setattr__(self, name, value):
AttributeError: 'DataFrame' object has no attribute 'indexs'
In [18]: for g in df.index:
...: print(g)
...:
0
1
2
3
4
5
6
In [19]: for h in df.values:
...: print(h)
...:
['A' 100 '1']
['A' 90 '1']
['B' '' '2']
['C' 50 '3']
['E' 120 '']
['F' 150 '3']
['G' 200 '2']